首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial pathogen Legionella pneumophila is found ubiquitously in fresh water environments where it replicates within protozoan hosts. When inhaled by humans it can replicate within alveolar macrophages and cause a severe pneumonia, Legionnaires disease. Yet much needs to be learned regarding the mechanisms that allow Legionella to modulate host functions to its advantage and the regulatory network governing its intracellular life cycle. The establishment and publication of the complete genome sequences of three clinical L. pneumophila isolates paved the way for major breakthroughs in understanding the biology of L. pneumophila. Based on sequence analysis many new putative virulence factors have been identified foremost among them eukaryotic-like proteins that may be implicated in many different steps of the Legionella life cycle. This review summarizes what is currently known about regulation of the Legionella life cycle and gives insight in the Legionella-specific features as deduced from genome analysis. Received 1 September 2006; received after revision 10 October 2006; accepted 22 November 2006  相似文献   

2.
Molecular determinants of antimalarial drug resistance are useful and informative tools that complement phenotypic assays for drug resistance. They also guide the design of strategies to circumvent such resistance once it has reached levels of clinical significance. Established resistance to arylaminoalcohols such as mefloquine and lumefantrine in SE Asia is mediated primarily by gene amplification of the P. falciparum drug transporter, pfmdr1. Single nucleotide polymorphisms in pfmdr1, whether assessed in field isolates or transfection experiments, are associated with changes in IC50 values (to arylaminoalcohols and chloroquine), but not of such magnitude as to influence clinical treatment outcomes. Recently described emerging in vitro resistance to artemisinins in certain areas correlates with mutations in the SERCA-like sequence PfATP6 and supports PfATP6 as a key target for artemisinins. Received 13 February 2006; revised after revision 7 March 2006; accepted 29 March 2006  相似文献   

3.
A new lysozyme (cv-lysozyme 2) with a MALDI molecular mass of 12 984.6 Da was purified from crystalline styles and digestive glands of eastern oysters (Crassostrea virginica) and its cDNA sequenced. Quantitative real time RT-PCR detected cv-lysozyme 2 gene expression primarily in digestive gland tissues, and in situ hybridization located cv-lysozyme 2 gene expression in basophil cells of digestive tubules. Cv-lysozyme 2 showed high amino acid sequence similarity to other bivalve mollusk lysozymes, including cv-lysozyme 1, a lysozyme recently purified from C. virginica plasma. Differences between cv-lysozyme 2 and cv-lysozyme 1 molecular characteristics, enzymatic properties, antibacterial activities, distribution in the oyster body and site of gene expression indicate that the main role of cv-lysozyme 2 is in digestion. While showing that a bivalve mollusk employs different lysozymes for different functions, findings in this study suggest adaptive evolution of i type lysozymes for nutrition. Received 30 August 2006; received after revision 14 October 2006; accepted 6 November 2006  相似文献   

4.
The Saccharomyces cerevisiae TPT1 gene plays a role in removing the 2-phosphate from ligated tRNA during the maturation of pre-tRNA. Here we reported the cloning and characterization of the human TRPT1 gene as a homolog of yeast TPT1. The TRPT1 gene is located at human chromosome 11q13 and encodes a polypeptide of 253 amino acids. BLAST searches with its amino acid sequence revealed the ubiquitous occurrence of TRPT1 homologs and their functional relationships with the presence of the DUF60/KptA domain. Northern analysis demonstrated that the gene is primarily expressed in heart and skeletal muscle, with lower or undetectable levels in other tissues studied. A plasmid-shuffling experiment showed that the human TRPT1 gene could complement the tpt1 mutation in S. cerevisiaeReceived 19 March 2003; received after revision 25 April 2003; accepted 22 May 2003  相似文献   

5.
The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53–56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.Received 23 October 2003; received after revision 5 December 2003; accepted 12 December 2003  相似文献   

6.
Phosphopeptides interacting with src homology 2 (SH2) domains can activate essential signaling enzymes in vitro. When delivered to cells, they may disrupt protein-protein interactions, thereby influencing intracellular signaling. We showed earlier that phosphopeptides corresponding to the inhibitory motif of Fcγ receptor IIb and a motif of the Grb2-associated binder 1 adaptor protein activate SH2-containing tyrosine phosphatase 2 in vitro. To study the ex vivo effects of these peptides, we have now compared different methods for peptide delivery: (i) permeabilization of the target cells and (ii) the use of cell-permeable vectors, which are potentially able to transport biologically active compounds into B cells. We found octanoyl-Arg8 to be an optimal carrier for the delivery of phosphopeptides to the cells. With this strategy, the function of cell-permeable SHP-2-binding phosphopeptides was analyzed. These peptides modulated the protein phosphorylation in B cells in a dose- and time-dependent manner. Received 27 July 2006; received after revision 4 September 2006; accepted 18 September 2006  相似文献   

7.
The use of anti-5-methylcytosine antibodies in affinity columns allowed the identification of methylated sequences in the genome of Drosophila melanogaster adults. In view of the presence of transposable elements amongst the identified sequences, it has been suggested that DNA methylation is involved in transposon control in the fly genome. On the contrary, a reanalysis of these data furnishes several intriguing elements that could raise new questions about the role that DNA methylation plays in the fly genome. The aim of the present paper is to discuss some features that emerge from the analysis of the identified methylated sequences. Received 26 January 2006; received after revision 8 May 2006; accepted 2 June 2006  相似文献   

8.
Pex19p exhibits a broad binding specificity for peroxisomal membrane proteins (PMPs), and is essential for the formation of functional peroxisomal membranes. Pex19p orthologues contain a C-terminal CAAX motif common to prenylated proteins. In addition, Saccharomyces cerevisiae and Chinese hamster Pex19p are at least partially farnesylated in vivo. Whether farnesylation of Pex19p plays an essential or merely ancillary role in peroxisome biogenesis is currently not clear. Here, we show that (i) nonfarnesylated and farnesylated human Pex19p display a similar affinity towards a select set of PMPs, (ii) a variant of Pex19p lacking a functional farnesylation motif is able to restore peroxisome biogenesis in Pex19p-deficient cells, and (iii) peroxisome protein import is not affected in yeast and mammalian cells defective in one of the enzymes involved in the farnesylation pathway. Summarized, these observations indicate that the CAAX box-mediated processing steps of Pex19p are dispensable for peroxisome biogenesis in yeast and mammalian cells. Received 10 March 2006; received after revision 28 April 2006; accepted 30 May 2006  相似文献   

9.
The RAG1 and RAG2 proteins play a crucial role in V(D)J recombination by cooperating to make specific double-stranded DNA breaks at a pair of recombination signal sequences (RSSs). However, the exact function they perform has heretofore remained elusive. Using a combination of sensitive methods of sequence analysis, we show here that the active core region of the RAG2 protein, confined to the first three quarters of its sequence, is in fact composed of a six-fold repeat of a 50-residue motif which is related to the kelch/mipp motif. This motif, which forms a four-stranded twisted antiparallel β sheet, is arranged in a circular formation like blades of a propeller or turbine. Given the known properties of the β-propeller fold in mediating protein-protein interactions, it is proposed that this six-laded propeller structure of the RAG2 active core would play a crucial role in the tight complex formed by the RAG1 and RAG2 proteins and RSSs. Moreover, the presence of a plant homeodomain finger-like motif in the last quarter of the RAG2 sequence suggests a potential interaction of this domain with chromatin components. Received 6 June 1998; accepted 9 June 1998  相似文献   

10.
DsbD is a redox-active protein of the inner Escherichia coli membrane possessing an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain. nDsbD interacts with four different redox proteins involved in the periplasmic disulfide isomerization and in the cytochrome c maturation systems. We review here the studies that led to the structural characterization of all soluble DsbD domains involved and, most importantly, of trapped disulfide intermediate complexes of nDsbD with three of its four redox partners. These results revealed the structural features enabling nDsbD, a ‘redox hub’ with an immunoglobulin-like fold, to interact efficiently with its different thioredoxin-like partners. Received 3 February 2006; received after revision 1 March 2006; accepted 5 April 2006  相似文献   

11.
Genetic analysis of the nematode Caenorhabditis elegans reveals that all dpy-5 alleles are dominant suppressors of bli-4 blistering. Molecular cloning of dpy-5 establishes that it encodes a cuticle procollagen, defects in which are responsible for the short-body, dumpy phenotype. The null mutation, e907 removes the entire coding region, whereas the dpy-5 reference allele, e61, contains a nonsense substitution. RT-PCR analysis and a dpy-5::gfp fusion show that dpy-5 is expressed only in hypodermal cells at all post-embryonic life-cycle stages. Variable expression of dpy-5 in V lineage-derived seam cells suggests an alternative regulatory mechanism in these cells. The dpy-5 gene product contains an Arg-X-X-Arg cleavage motif that could be recognized by a proprotein convertase, such as BLI-4. Mutation of this site cause a dominant dumpy phenotype suggesting Dpy-5 procollagen requires processing for normal cuticle production. Received 13 January 2006; accepted 23 March 2006  相似文献   

12.
DNA transposons in vertebrate functional genomics   总被引:7,自引:0,他引:7  
Genome sequences of many model organisms of developmental or agricultural importance are becoming available. The tremendous amount of sequence data is fuelling the next phases of challenging research: annotating all genes with functional information, and devising new ways for the experimental manipulation of vertebrate genomes. Transposable elements are known to be efficient carriers of foreign DNA into cells. Notably, members of the Tc1/mariner and the hAT transposon families retain their high transpositional activities in species other than their hosts. Indeed, several of these elements have been successfully used for transgenesis and insertional mutagenesis, expanding our abilities in genome manipulations in vertebrate model organisms. Transposon-based genetic tools can help scientists to understand mechanisms of embryonic development and pathogenesis, and will likely contribute to successful human gene therapy. We discuss the possibilities of transposon-based techniques in functional genomics, and review the latest results achieved by the most active DNA transposons in vertebrates. We put emphasis on the evolution and regulation of members of the best-characterized and most widely used Tc1/mariner family.Received 8 June 2004; received after revision 26 October 2004; accepted 18 November 2004  相似文献   

13.
A 430-bp cDNA encoding the insect antimicrobial peptide defensin was cloned from the housefly, and designated Musca domestica defensin (Mdde). The open reading frame of the cDNA encoded a 92-amino acid peptide with an N-terminal signal sequence followed by a propeptide that is processed by cleavage to a 40-amino acid mature peptide. Northern analysis and in situ hybridization identified the corresponding mRNA in the fat body of bacterially challenged houseflies and in the epidermis of the body wall of naive and challenged houseflies. The Gram-negative bacterium (Escherichia coli) is a strong inducer of the gene. By RT-PCR, Mdde mRNA was also detected in naive and challenged insects. These findings suggest that the defensin gene is constitutively expressed in the epidermis of the housefly body wall. The predicted mature form of Mdde was expressed as a recombinant peptide in E. coli and Pichia pastoris. The recombinant Mdde expressed in Pichia was active against Gram-positive and some Gram-negative bacteria. Received 20 June 2006; received after revision 3 October 2006; accepted 30 October 2006  相似文献   

14.
A part of the gene coding for a halophilic serine protease from a halophilic archaeumHaloferax mediterranei R4 was amplified by PCR and its 672 nucleotide sequence was determined. Tentative translation to the amino acid sequence suggested that the enzyme was quite similar to halolysin produced by another halophilic archaeum strain 172P1. Nucleotide sequences of 16S rRNA encoding genes from 9 halophilic archaea were determined. Alignment of 19 sequences known so far showed that there are more than 20 positions carrying bases or deletions specific for each halobacterial genus:Halobacterium, Haloarcula, Haloferax, andHalococcus.  相似文献   

15.
Pelizaeus-Merzbacher disease (PMD) and the allelic spastic paraplegia type 2 (SPG2) arise from mutations in the X-linked gene encoding myelin proteolipid protein (PLP). Analysis of mutations affecting PLP, the major protein in central nervous system myelin, has revealed previously unsuspected roles for myelinating glia in maintaining the integrity of the nervous system. The disease spectrum for PMD and SPG2 is extraordinarily broad and can be best understood by accounting not only for the wide range of mutations that can occur but also for the effects of PLP1 mutations on both cell autonomous and non-cell autonomous processes in myelinating cells. Appreciating the wide range of genetic and cellular effects of PLP1 mutations is important for patient and family counseling, understanding disease pathogenesis, and, ultimately, for developing future disease-specific therapies. Received 24 April 2006; received after revision 3 July 2006; accepted 9 October 2006  相似文献   

16.
A mitogen-activated protein kinase (MAPK), Pfmap2, has been identified in Plasmodium falciparum. However, its bona fide activator remains elusive as no MAPK kinase (MAPKK) homologues have been found so far. Instead, Pfnek3, a NIMA (never in mitosis, Aspergillus)-related kinase, was earlier reported to display a MAPKK-like activity due to its activating effect on Pfmap2. In this study, the regulatory mechanism of Pfnek3 was investigated. Pfnek3 was found to possess a SSEQSS motif within its activation loop that fulfills the consensus SXXXS/T phospho-activating sequence of MAPKKs. Functional analyses of the SSEQSS motif by site-directed mutagenesis revealed that phosphorylation of residues S221 and S226 is essential for mediating Pfnek3 activity. Moreover, via tandem mass-spectrometry, residue T82 was uncovered as an additional phosphorylation site involved in Pfnek3 activation. Collectively, these results provide valuable insights into the potential in vivo regulation of Pfnek3, with residues T82, S221 and S226 functioning as phospho-activating sites.  相似文献   

17.
The DSCR1 (Adapt78) gene1 is transiently induced by stresses to temporarily protect cells against further potentially lethal challenges. However, chronic expression of the DSCR1 (Adapt78) gene has now been implicated in several pathological conditions including Alzheimer’s disease, Down syndrome and cardiac hypertrophy. Calcipressin 1 has been shown to function through direct binding and inhibition of the serine threonine protein phosphatase Calcineurin. Pharmacological inhibition of calcineurin, by the immunosuppressive drugs cyclosporin A and FK506, affects a wide variety of diseases. It is, therefore, likely that this endogenous calcineurin inhibitor, calcipressin 1, may also play a role in a variety of human diseases. 1Please note that the mammalian DSCR1 gene is also called Adapt78 or RCAN1, and its protein products have been named Calcipressin1, MCIP1 and RCAN1. A proposal to adopt a single gene name of RCAN1 and a protein name RCAN1 (for Regulator of Calcineurin) has been endorsed by the HUGO Gene Nomenclature Committee, but final approval must await agreement from a majority of researchers in the field. Received 2 March 2005; received after revision 27 May 2005; accepted 19 July 2005  相似文献   

18.
Cadherins are Ca2+-dependent transmembrane glycoproteins crucial for cell-cell adhesion in vertebrates and invertebrates. Classification of this superfamily due to their phylogenetic relationship is currently restricted to three major subfamilies: classical, desmosomal and protocadherins. Here we report evidence for a common phylogenetic origin of the kidney-specific Ksp- (Cdh16) and the intestine-specific LI-cadherin (Cdh17). Both genes consist of 18 exons and the positions of their exon-intron boundaries as well as their intron phases are perfectly conserved. We found an extensive paralogy of more than 40 megabases in mammals as well as teleost fish species encompassing the Ksp- and LI-cadherin genes. A comparable paralogy was not detected for other cadherin gene loci. These findings suggest that the Ksp- and LI-cadherin genes originated by chromosomal duplication early during vertebrate evolution and support our assumption that both proteins are paralogues within a separate cadherin family that we have termed 7D-cadherins. Received 16 January 2006; received after revision 18 April 2006; accepted 11 May 2006  相似文献   

19.
Streptomyces cacaoi -lactamase genes are controlled by two regulators named blaA and blaB. Whereas BlaA has been identified as a LysR-type activator, the function of BlaB is still unknown. Its primary structure is similar to that of the serine penicillin-recognizing enzymes (PREs). Indeed, the SXXK and KTG motifs are perfectly conserved in BlaB, whereas the common SXN element found in PREs is replaced by a SDG motif. Site-directed mutations were introduced in these motifs and they all disturb -lactamase regulation. A water-soluble form of BlaB was also overexpressed in the Streptomyces lividans TK24 cytoplasm and purified. To elucidate the activity of BlaB, several compounds recognized by PREs were tested. BlaB could be acylated by some of them, and it can therefore be considered as a penicillin-binding protein. BlaB is devoid of -lactamase, D-aminopeptidase, DD-carboxypeptidase or thiolesterase activity.Received 13 January 2003; received after revision 9 April 2003; accepted 11 April 2003  相似文献   

20.
The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined Km values ranged from 0.05 to 0.3 μM and kcat values from 2.3 to 17.6 min−1, while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The Km values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. Received 12 October 2006; received after revision 6 December 2006; accepted 8 January 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号