首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Deletions on human chromosome 8p22-23 in prostate cancer cells and linkage studies in families affected with hereditary prostate cancer (HPC) have implicated this region in the development of prostate cancer. The macrophage scavenger receptor 1 gene (MSR1, also known as SR-A) is located at 8p22 and functions in several processes proposed to be relevant to prostate carcinogenesis. Here we report the results of genetic analyses that indicate that mutations in MSR1 may be associated with risk of prostate cancer. Among families affected with HPC, we identified six rare missense mutations and one nonsense mutation in MSR1. A family-based linkage and association test indicated that these mutations co-segregate with prostate cancer (P = 0.0007). In addition, among men of European descent, MSR1 mutations were detected in 4.4% of individuals affected with non-HPC as compared with 0.8% of unaffected men (P = 0.009). Among African American men, these values were 12.5% and 1.8%, respectively (P = 0.01). These results show that MSR1 may be important in susceptibility to prostate cancer in men of both African American and European descent.  相似文献   

3.
Cblb is a major susceptibility gene for rat type 1 diabetes mellitus   总被引:2,自引:0,他引:2  
The autoimmune disease type 1 diabetes mellitus (insulin-dependent diabetes mellitus, IDDM) has a multifactorial etiology. So far, the major histocompatibility complex (MHC) is the only major susceptibility locus that has been identified for this disease and its animal models. The Komeda diabetes-prone (KDP) rat is a spontaneous animal model of human type 1 diabetes in which the major susceptibility locus Iddm/kdp1 accounts, in combination with MHC, for most of the genetic predisposition to diabetes. Here we report the positional cloning of Iddm/kdp1 and identify a nonsense mutation in Cblb, a member of the Cbl/Sli family of ubiquitin-protein ligases. Lymphocytes of the KDP rat infiltrate into pancreatic islets and several tissues including thyroid gland and kidney, indicating autoimmunity. Similar findings in Cblb-deficient mice are caused by enhanced T-cell activation. Transgenic complementation with wildtype Cblb significantly suppresses development of the KDP phenotype. Thus, Cblb functions as a negative regulator of autoimmunity and Cblb is a major susceptibility gene for type 1 diabetes in the rat. Impairment of the Cblb signaling pathway may contribute to human autoimmune diseases, including type 1 diabetes.  相似文献   

4.
5.
Type 1 or insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease of the insulin-producing pancreatic beta-cells which is determined by both genetic and environmental factors. The major histocompatibility complex and the insulin gene region (INS) on human chromosomes 6p and 11p, respectively, contain susceptibility genes. Using a mostly French data set, evidence for linkage of INS to IDDM was recently obtained but only in male meioses (suggesting involvement of maternal imprinting) and only in HLA-DR4-positive diabetics. In contrast, we find evidence for linkage in both male and female meioses and that the effect of the susceptibility gene(s) in the INS region is not dependent on the presence of HLA-DR4.  相似文献   

6.
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin   总被引:22,自引:0,他引:22  
The pathogenesis of Bacillus anthracis, the bacterium that causes anthrax, depends on secretion of three factors that combine to form two bipartite toxins. Edema toxin, consisting of protective antigen (PA) and edema factor (EF), causes the edema associated with cutaneous anthrax infections, whereas lethal toxin (LeTx), consisting of PA and lethal factor (LF), is believed to be responsible for causing death in systemic anthrax infections. EF and LF can be transported by PA into the cytosol of many cell types. In mouse macrophages, LF can cause rapid necrosis that may be related to the pathology of systemic infections. Inbred mouse strains display variable sensitivity to LeTx-induced macrophage necrosis. This trait difference has been mapped to a locus on chromosome 11 named Ltxs1 (refs. 7,8). Here we show that an extremely polymorphic gene in this locus, Nalp1b, is the primary mediator of mouse macrophage susceptibility to LeTx. We also show that LeTx-induced macrophage death requires caspase-1, which is activated in susceptible, but not resistant, macrophages after intoxication, suggesting that Nalp1b directly or indirectly activates caspase-1 in response to LeTx.  相似文献   

7.
8.
IPEX is a fatal disorder characterized by immune dysregulation, polyendocrinopathy, enteropathy and X-linked inheritance (MIM 304930). We present genetic evidence that different mutations of the human gene FOXP3, the ortholog of the gene mutated in scurfy mice (Foxp3), causes IPEX syndrome. Recent linkage analysis studies mapped the gene mutated in IPEX to an interval of 17-20-cM at Xp11. 23-Xq13.3.  相似文献   

9.
10.
A major susceptibility locus for leprosy in India maps to chromosome 10p13   总被引:10,自引:0,他引:10  
Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is prevalent in India, where about half of the world's estimated 800,000 cases occur. A role for the genetics of the host in variable susceptibility to leprosy has been indicated by familial clustering, twin studies, complex segregation analyses and human leukocyte antigen (HLA) association studies. We report here a genetic linkage scan of the genomes of 224 families from South India, containing 245 independent affected sibpairs with leprosy, mainly of the paucibacillary type. In a two-stage genome screen using 396 microsatellite markers, we found significant linkage (maximum lod score (MLS) = 4.09, P < 2x10-5) on chromosome 10p13 for a series of neighboring microsatellite markers, providing evidence for a major locus for this prevalent infectious disease. Thus, despite the polygenic nature of infectious disease susceptibility, some major, non-HLA-linked loci exist that may be mapped through obtainable numbers of affected sibling pairs.  相似文献   

11.
Mutation of DNASE1 in people with systemic lupus erythematosus   总被引:19,自引:0,他引:19  
Systemic lupus erythematosus (SLE) is a highly prevalent human autoimmune diseases that causes progressive glomerulonephritis, arthritis and an erythematoid rash. Mice deficient in deoxyribonuclease I (Dnase1) develop an SLE-like syndrome. Here we describe two patients with a heterozygous nonsense mutation in exon 2 of DNASE1, decreased DNASE1 activity and an extremely high immunoglobulin G titer against nucleosomal antigens. These data are consistent with the hypothesis that a direct connection exists between low activity of DNASE1 and progression of human SLE.  相似文献   

12.
Crossover between the human sex chromosomes during male meiosis is restricted to the terminal pseudoautosomal pairing regions. An obligatory exchange occurs in PAR1, an Xp/Yp pseudoautosomal region of 2.6 Mb, which creates a male-specific recombination 'hot domain' with a recombination rate that is about 20 times higher than the genome average. Low-resolution analysis of PAR1 suggests that crossovers are distributed fairly randomly. By contrast, linkage disequilibrium (LD) and sperm crossover analyses indicate that crossovers in autosomal regions tend to cluster into 'hot spots' of 1-2 kb that lie between islands of disequilibrium of tens to hundreds of kilobases. To determine whether at high resolution this autosomal pattern also applies to PAR1, we have examined linkage disequilibrium over an interval of 43 kb around the gene SHOX. Here we show that in northern European populations, disequilibrium decays rapidly with physical distance, which is consistent with this interval of PAR1 being recombinationally active in male meiosis. Analysis of a subregion of 9.9 kb in sperm shows, however, that crossovers are not distributed randomly, but instead cluster into an intense recombination hot spot that is very similar in morphology to autosomal hot spots. Thus, PAR1 crossover activity may be influenced by male-specific hot spots that are highly suitable for characterization by sperm DNA analysis.  相似文献   

13.
Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.  相似文献   

14.
15.
16.
Liu P  Wang Y  Vikis H  Maciag A  Wang D  Lu Y  Liu Y  You M 《Nature genetics》2006,38(8):888-895
We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps ( approximately 1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.  相似文献   

17.
18.
End-stage renal disease (ESRD) is a major public health problem, affecting 1 in 1,000 individuals and with an annual death rate of 20% despite dialysis treatment. IgA nephropathy (IgAN) is the most common form of glomerulonephritis, a principal cause of ESRD worldwide; it affects up to 1.3% of the population and its pathogenesis is unknown. Kidneys of people with IgAN show deposits of IgA-containing immune complexes with proliferation of the glomerular mesangium (Fig. 1). Typical clinical features include onset before age 40 with haematuria and proteinuria (blood and protein in the urine), and episodes of gross haematuria following mucosal infections are common; 30% of patients develop progressive renal failure. Although not generally considered a hereditary disease, striking ethnic variation in prevalence and familial clustering, along with subclinical renal abnormalities among relatives of IgAN cases, have suggested a heretofore undefined genetic component. By genome-wide analysis of linkage in 30 multiplex IgAN kindreds, we demonstrate linkage of IgAN to 6q22-23 under a dominant model of transmission with incomplete penetrance, with a lod score of 5.6 and 60% of kindreds linked. These findings for the first time indicate the existence of a locus with large effect on development of IgAN and identify the chromosomal location of this disease gene.  相似文献   

19.
20.
Most susceptibility to colorectal cancer (CRC) is not accounted for by known risk factors. Because MLH1, MSH2 and MSH6 mutations underlie high-penetrance CRC susceptibility in hereditary nonpolyposis colon cancer (HNPCC), we hypothesized that attenuated alleles might also underlie susceptibility to sporadic CRC. We looked for gene variants associated with HNPCC in Israeli probands with familial CRC unstratified with respect to the microsatellite instability (MSI) phenotype. Association studies identified a new MLH1 variant (415G-->C, resulting in the amino acid substitution D132H) in approximately 1.3% of Israeli individuals with CRC self-described as Jewish, Christian and Muslim. MLH1 415C confers clinically significant susceptibility to CRC. In contrast to classic HNPCC, CRCs associated with MLH1 415C usually do not have the MSI defect, which is important for clinical mutation screening. Structural and functional analyses showed that the normal ATPase function of MLH1 is attenuated, but not eliminated, by the MLH1 415G-->C mutation. The new MLH1 variant confers a high risk of CRC and identifies a previously unrecognized mechanism in microsatellite-stable tumors. These studies suggest that variants of mismatch repair proteins with attenuated function may account for a higher proportion of susceptibility to sporadic microsatellite-stable CRC than previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号