首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental entanglement purification of arbitrary unknown states   总被引:6,自引:0,他引:6  
Pan JW  Gasparoni S  Ursin R  Weihs G  Zeilinger A 《Nature》2003,423(6938):417-422
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.  相似文献   

2.
研究了受激辐射相互作用下两原子体系的量子纠缠特性.运用量子绝热近似方法,获得了体系的有效哈密顿量,讨论了在该哈密顿量下两原子量子纠缠的动力学演化.研究结果说明,在大失谐条件下,受激辐射相互作用可以将两原子制备到最大纠缠的Bell态,在退相干时间内,原子的自发辐射及热环境对量子纠缠的影响不大.  相似文献   

3.
Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such 'entangled' states explicitly demonstrate the non-local character of quantum theory, having potential applications in high-precision spectroscopy, quantum communication, cryptography and computation. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited--and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.  相似文献   

4.
Kwiat PG  Barraza-Lopez S  Stefanov A  Gisin N 《Nature》2001,409(6823):1014-1017
Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.  相似文献   

5.
Experimental long-lived entanglement of two macroscopic objects   总被引:3,自引:0,他引:3  
Julsgaard B  Kozhekin A  Polzik ES 《Nature》2001,413(6854):400-403
Entanglement is considered to be one of the most profound features of quantum mechanics. An entangled state of a system consisting of two subsystems cannot be described as a product of the quantum states of the two subsystems. In this sense, the entangled system is considered inseparable and non-local. It is generally believed that entanglement is usually manifest in systems consisting of a small number of microscopic particles. Here we demonstrate experimentally the entanglement of two macroscopic objects, each consisting of a caesium gas sample containing about 1012 atoms. Entanglement is generated via interaction of the samples with a pulse of light, which performs a non-local Bell measurement on the collective spins of the samples. The entangled spin-state can be maintained for 0.5 milliseconds. Besides being of fundamental interest, we expect the robust and long-lived entanglement of material objects demonstrated here to be useful in quantum information processing, including teleportation of quantum states of matter and quantum memory.  相似文献   

6.
Zhao Z  Chen YA  Zhang AN  Yang T  Briegel HJ  Pan JW 《Nature》2004,430(6995):54-58
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required for universal quantum error correction. Another key process in distributed quantum information processing, similar to encoding and decoding, is a teleportation protocol that we term 'open-destination' teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation and multi-party quantum communication.  相似文献   

7.
Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.  相似文献   

8.
Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.  相似文献   

9.
10.
Blatt R 《Nature》2000,404(6775):231-232
  相似文献   

11.
为了避免热电集成膜蒸馏系统(TIMES)结构复杂,可靠性差,能耗高的缺点,提出了热电集成直接蒸馏式水净化系统,并通过实验对该系统进行了可行性验证和性能分析.与TIMES系统相比,直接蒸馏式水净化系统的能耗较低,净化水中无机盐成分较少;随着系统工作电流增大,系统产水率提高,但单位质量产水所消耗的能量(单耗)也增大;增加半导体热泵数量既可以提高系统的产水率也可以降低净化水的单耗;然而增大半导体热泵热端的液膜厚度会使系统的产水率降低且单耗增大.  相似文献   

12.
研究了在考虑腔场有能量损耗、原子有自发辐射时,两非等同纠缠原子与单模腔场相互作用过程中两原子之间的纠缠特性。结果表明;两纠缠原子的纠缠特性与两原子初态、腔场耗散系数k、原子的自发辐射率Γ及两原子与腔、场的耦合系数g1g2有一定的联系。  相似文献   

13.
利用独立态矢特性,首次提出了一个纠缠态的定义及构造纠缠的理论,并进一步给出了多粒子系统的纠缠方式,进而给出基本纠缠方式的纠缠度的定义式,并推导出其公式,得出了三粒子系统的非纠缠判据.  相似文献   

14.
Scalable multiparticle entanglement of trapped ions   总被引:2,自引:0,他引:2  
The generation, manipulation and fundamental understanding of entanglement lies at the very heart of quantum mechanics. Entangled particles are non-interacting but are described by a common wavefunction; consequently, individual particles are not independent of each other and their quantum properties are inextricably interwoven. The intriguing features of entanglement become particularly evident if the particles can be individually controlled and physically separated. However, both the experimental realization and characterization of entanglement become exceedingly difficult for systems with many particles. The main difficulty is to manipulate and detect the quantum state of individual particles as well as to control the interaction between them. So far, entanglement of four ions or five photons has been demonstrated experimentally. The creation of scalable multiparticle entanglement demands a non-exponential scaling of resources with particle number. Among the various kinds of entangled states, the 'W state' plays an important role as its entanglement is maximally persistent and robust even under particle loss. Such states are central as a resource in quantum information processing and multiparty quantum communication. Here we report the scalable and deterministic generation of four-, five-, six-, seven- and eight-particle entangled states of the W type with trapped ions. We obtain the maximum possible information on these states by performing full characterization via state tomography, using individual control and detection of the ions. A detailed analysis proves that the entanglement is genuine. The availability of such multiparticle entangled states, together with full information in the form of their density matrices, creates a test-bed for theoretical studies of multiparticle entanglement. Independently, 'Greenberger-Horne-Zeilinger' entangled states with up to six ions have been created and analysed in Boulder.  相似文献   

15.
Many-particle entanglement with Bose-Einstein condensates   总被引:9,自引:0,他引:9  
Sørensen A  Duan LM  Cirac JI  Zoller P 《Nature》2001,409(6816):63-66
The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics. So far, up to four atoms have been entangled in a controlled way. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose-Einstein condensates fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose-Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.  相似文献   

16.
Vedral V 《Nature》2008,453(7198):1004-1007
Traditionally, entanglement was considered to be a quirk of microscopic objects that defied a common-sense explanation. Now, however, entanglement is recognized to be ubiquitous and robust. With the realization that entanglement can occur in macroscopic systems - and with the development of experiments aimed at exploiting this fact - new tools are required to define and quantify entanglement beyond the original microscopic framework.  相似文献   

17.
18.
Vedral V 《Nature》2010,468(7325):769-770
  相似文献   

19.
不同红树处理海水养殖尾水效果初探   总被引:3,自引:0,他引:3  
为探究不同红树品种对舟山地区海水养殖尾水的处理效果。选取秋茄、桐花、白骨壤三种耐寒性较强的红树植物,对比分析三种红树人工湿地处理对虾大棚养殖尾水的净化效果,同时也将红树植物人工湿地与无植物人工湿地尾水净化效果进行了对比分析。结果表明,红树人工湿地处理海水养殖尾水效果明显好于无植物人工湿地。对比三个红树品种,总体而言,白骨壤人工湿地处理海水养殖尾水效果相对优于秋茄、桐花两个红树品种的人工湿地,而秋茄人工湿地在海水养殖尾水前期处理阶段的净化效果比较好。  相似文献   

20.
淤泥容纳、滋生和释放病原微生物威胁城市景观水环境安全。利用陶化后的淤泥颗粒固定蛭弧菌净化城市景观水体中病原微生物,可避免物化消毒对景观水体中其他动植物造成伤害。陶化淤泥颗粒固定蛭弧菌及固定化蛭弧菌对大肠杆菌、实际景观水体中总大肠菌群和粪大肠菌群裂解的试验结果表明:淤泥陶化温度为800℃、吸附时间为6 h、培养温度为30℃、摇床转速为140 r/min时,蛭弧菌固定化的效果最好;在此条件下固定的蛭弧菌,在72 h的试验周期内,对大肠杆菌的去除率达到97.4%,远超对照组的38.4%;采用陶化淤泥颗粒固定蛭弧菌去除城市景观水体中总大肠菌群和粪大肠菌群两种指示性病原微生物,去除率分别达到97.5%和78%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号