首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen Plus V10.0对工艺流程进行模拟研究。以塔釜产品纯度为约束变量,高压塔塔釜能耗最低为优化目标,分别对理论板数、进料位置、回流比等参数进行优化,优化后的两塔最优工艺参数如下:常压塔理论板数31,回流比2.5,进料位置第9块塔板,循环物料进料位置第14块塔板;高压塔操作压力500 kPa,理论板数21,进料位置第13块塔板,回流比3.3。分离效果可达到甲醇质量分数99.95%,丙酸甲酯质量分数99.94%。与传统变压精馏相比,本文的耦合变压精馏可节省能耗48.8%。  相似文献   

2.
基于NRTL模型,以乙二醇为萃取剂,用Aspen Plus软件对二氯甲烷-乙醇-水三元体系间歇萃取精馏过程进行模拟,分别考虑了溶剂比、回流比、塔板数、溶剂进料位置和溶剂进料温度对整个精馏过程的影响.原料为100 kg含95%二氯甲烷(质量分数)、3%水、2%乙醇的混合溶液,利用模拟结果对各工艺参数进行分析和优化,得出了最佳的操作条件:精馏塔塔板数为20块、溶剂进料位置在第2块塔板、溶剂进料温度为38℃、回流比为2.5、溶剂比为0.575.在该操作条件下,塔顶的二氯甲烷的质量分数可达99.8%以上,回收率为96.65%,满足溶剂回收再利用的要求.通过实验对该模拟结果进行验证,得到的二氯甲烷质量分数高达99.8%,回收率为90%左右,与模拟结果基本一致.  相似文献   

3.
为获得二甲基甲酰胺(DMF)与氯仿(CHCl3)精馏分离的基础热力学数据,实验采用改进型的Rose平衡釜测定了DMF-CHCl3体系在760mmHg下的汽液相平衡数据,并分别用NRTL和Margules模型对实验数据进行关联。结果表明:实验数据满足热力学一致性的检验,且NRTL和Margules模型的计算结果与实测结果偏差小,平均绝对误差分别为0.0026和0.0010,平均相对误差分别为1.81%和1.23%,可满足工业精馏工艺过程设计的需要。  相似文献   

4.
采用离子液体硫酸氢根吡啶([Hpy][HSO4])作为催化剂,对乙酸和正丁醇在反应精馏塔中进行酯化反应生成乙酸正丁酯的过程进行模拟研究。在缺乏实验数据的情况下,使用真实溶剂似导体屏蔽模型(COSMO-RS)方法预测了离子液体与其他物质的汽液相平衡,得到了离子液体与反应体系的二元交互参数。基于共沸精馏概念设计了带有分相器的反应精馏塔,实现了离子液体的循环利用。分析了反应精馏塔总塔板数、进料模式、进料塔板位置、再沸器热值和塔板持液量对于产品质量和乙酸转化率的影响,结果表明,当反应精馏塔塔板总数为28,反应物从第4块塔板同时进料,离子液体从第2块塔板进料,且塔板持液量为0.05m3时,乙酸正丁酯纯度和乙酸转化率均可达99.9%。  相似文献   

5.
以二甲基亚砜(DMSO)作为萃取剂,选用UNIQUAC热力学模型对丙烯醛精馏脱水工艺进行模拟研究与优化。利用Aspen plusV9.0流程模拟软件进行模拟计算,基于全年总费用(TAC)最低原则,采用迭代优化法分别对萃取精馏塔(T-101)、溶剂回收塔(T-102)的理论板数(NT)、进料位置(NF)、回流比(R)等参数进行了优化,最终模拟结果为:萃取精馏塔总理论塔板数30,进料位置第25块理论板,回流比0.249,萃取剂进料位置第4块理论板,溶剂比0.183;溶剂回收塔的理论塔板数22,回流比0.232,进料位置第11块理论板;通过优化得到TAC最低为340万元/a。本文的模拟结果可以为丙烯醛脱水工艺的设计提供理论参考。  相似文献   

6.
选择水、氯苯作为正、反向萃取剂来分离丙酮-甲醇共沸物系,规定原料液进料流率为540 kmol/h,进料温度为320 K,各塔的操作压力均为101.325 kPa,通过Aspen Plus进行流程模拟,得到摩尔分数为99.5%的产品。以最小全年总费用(TAC)为目标、序贯迭代搜索法为优化方法对不同萃取剂下的各塔进行灵敏度分析,规定塔顶轻组分摩尔分数为99.5%、摩尔回收率为99.99%,得到的优化结果显示:正向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为76块、64块和45块,萃取剂回收塔的理论塔板数、进料位置分别为25块、14块;反向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为52块、40块和24块,萃取剂回收塔的理论塔板数、进料位置分别为25块、7块。通过TAC计算表算出两种萃取剂下工艺流程所需的经济费用,结果为正向萃取流程费用26 658 942.69元/a,反向萃取流程费用25 466 172.02元/a。  相似文献   

7.
乙酸乙酯(ethyl acetate)是一种优异的高档绿色溶剂。该文模拟优化了从乙酸乙酯、丙酸丙酯混合物中精馏提纯乙酸乙酯的过程,考察了混合物的进料位置、进料温度、乙酸乙酯回收塔塔板数、回流比对乙酸乙酯回收效果的影响,得到如下结论:混合物在5th塔板进料,混合物进料温度为40℃,乙酸乙酯回收塔的塔板数为8块;乙酸乙酯回收塔的回流比为2.5时,乙酸乙酯精馏提纯效果最好。另外,模拟得到了乙酸乙酯回收塔的温度分布与浓度分布。  相似文献   

8.
以碳酸钾为催化剂分别将1(4),8(11),15(18),22(25)-四(4-羧基苯氧基)酞菁锌(1)和卜(4-羧基苯氧基)酞菁锌(2)与溴代乙酰糖基(乳糖、麦芽糖和葡萄糖)偶联,得到5种糖基酞菁偶联衍生物,IR,MS和UV—Vis光谱证实羧基酞菁与糖基成功偶联.糖基过量时,由1主要获得糖基二取代产物.溶解性和稳定性研究表明:5种偶联衍生物易溶或可溶于DMF、丙酮、THF、氯仿和甲醇中,不溶于水,它们在DMF中避光均能稳定存在.在DMF、丙酮、THF、甲醇和氯仿中它们显示相似的酞菁单体的电子吸收光谱,在体积分数O.1%DMF的水中出现聚集,这些体系中的Q带特征吸收峰位于670~690nm;在DMF和含O.1%DMF的水中的荧光量子产率分别为0.358-0.721与0.121~O.198,为原酞菁(1和2)的2~3倍和3~5倍.  相似文献   

9.
目的 合成一种新型汽油辛烷值改进剂——甲氧基异丁酸烷基酯。方法采用烃化反应合成甲氧基异丁酸烷基酯,研究法测定汽油辛烷值。结果甲醇与甲基丙烯酸甲酯的配料比(物质的量比)为1.8:1,反应时间为4h,催化剂用量为15%(质量分数),阻聚剂的量为0.2%(质量分数),此条件下产品收率为87.3%。结论改进剂添加量为3%~7%(体积分数)时,汽油辛烷值可提高1.5~10个单位。  相似文献   

10.
利用化工模拟软件Aspen Plus 7.3对萃取精馏分离醋酸乙烯-甲醇共沸物流程进行模拟和优化,对塔板数、回流比、进料位置、萃取剂流率和温度等操作参数进行灵敏度分析。模拟优化得到萃取精馏塔的设计参数为:塔板数31,回流比0.27,萃取剂进料位置第2块塔板,萃取剂流率21932kg/h,混合物进料位置第22块塔板,塔顶采出量18477kg/h。溶剂回收塔的设计参数为:塔板数24,回流比1.80,进料位置第19块塔板,塔顶采出量12626kg/h。在此基础上,对优化前后能耗进行对比,节省循环水、蒸汽和萃取剂用量分别为285。9万t/a、3.2万t/a和4.4万t/a,每年共带来经济效  相似文献   

11.
采用溶胶-凝胶法制备H3PW6Mo6O40/SiO2催化剂,以苯甲醛,乙酰乙酸乙酯和尿素为原料,无水乙醇为溶剂催化合成4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮,研究结果表明:反应物的摩尔比、反应温度、催化剂用量和反应时间是影响4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮合成收率的重要因素.当n(苯甲醛)∶n(乙酰乙酸乙酯)∶n(尿素)=1.0∶1.2∶1.5,反应温度为90℃,催化剂的用量占反应物料总质量的1.5%,反应时间为75min时,产品收率可达70.3%.通过熔点、IR、1 H NMR和MS对合成目标化合物进行了表征确认.  相似文献   

12.
以丙烯酸(AA)与2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为共聚单体,过硫酸铵为引发剂,异丙醇为链转移剂,采用水溶液聚合法,合成了AA-AMPS共聚物.研究了引发剂用量、链转移剂用量及聚合反应温度等因素对聚合产物黏均分子质量的影响.实验结果表明,在n(AA)∶n(AMPS)=96∶4,引发剂质量分数(基于两种单体)为2%~5%,链转移剂质量比(基于两种单体)为0.30~0.95,单体质量分数(基于反应体系)为40%,反应温度在85~100℃,反应时间3 h的条件下,合成出了黏均分子质量在3900~10 000范围内的AA-AMPS共聚物.最后对产物进行了红外光谱分析.  相似文献   

13.
目的合成4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮。方法采用一锅法Biginelli反应以乙酰乙酸乙酯、苯甲醛和尿素为原料,H3PW12O40/SiO2为催化剂,无水乙醇为溶剂进行合成目标化合物。通过熔点,IR,1 H NMR和MS等测试手段对合成的目标化合物进行表征。结果探讨了反应温度、催化剂用量、反应时间和反应物的摩尔比对收率的影响。实验表明:固定苯甲醛用量为0.04mol的条件下,催化剂的用量占反应物料总质量的2.0%,n(苯甲醛)∶n(乙酰乙酸乙酯)∶n(尿素)=1∶1.5∶1.5,反应时间为90min,反应温度为90℃。在优化条件下,产品平均收率可达79.2%。结论溶胶凝胶法制备的H3PW12O40/SiO2是合成4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮的良好催化剂,具有催化剂用量少,催化活性高,可回收重复使用等特点。  相似文献   

14.
陈衍华  黄朝  谌开红 《江西科学》2008,26(6):957-960
以2,4-二氟联苯为原料,以乙酰氯为酰化剂,二氯甲烷为溶剂,AlCl3作为催化剂,经过Friedel-Crafts酰化反应制得4-(2’,4’-二氟苯基)苯乙酮。确定的最佳反应条件为:AlCl,与乙酰氯的摩尔比为1.05,乙酰氯与2,4-二氟联苯的摩尔比为1.34,原料液滴加温度为15℃,于25℃下保温反应2.5h,进行适当的后处理,使4-(2’,4’-二氟苯基)苯乙酮达到最佳收率98.2%(基于二氟联苯),熔点为70℃-72℃,纯度为93.5%。  相似文献   

15.
采用分次分步加料一锅煮合成法,以间甲酚和酸化的木质素磺酸钠来改性制取新的酚醛树脂胶粘剂.研究了酸化反应的时间,合成温度及投料比对胶粘剂性能的影响.结果表明:酸化反应2.5h,合成温度100℃,n(甲醛):n(苯酚+木质素)=0.75:1,n(问甲酚):n(苯酚+木质素)=0.10:1,n(木质素):n(苯酚+木质素)=0.30:1时含游离醛质量分数为0.10%,游离酚质量分数为0.25%,黏度0.38Pa·S,粘合强度2.0MPa,最后用红外光谱和紫外光谱对胶粘剂进行结构测试.  相似文献   

16.
富马酸海藻糖甲酯的合成及抑菌活性研究   总被引:1,自引:0,他引:1  
富马酸海藻糖甲酯的合成分3步完成:第一步,以摩尔比为1:1的甲醇和马来酸酐为原料,以3%的无水AlCl3和3%的硫酸氢钠为异构化催化剂,在60℃下酯化反应0.5h,再升温至80℃异构化反应2h,得到富马酸单甲酯(MMF);第二步,以摩尔比为1:2.5的MMF和亚硫酰氯为原料,在90℃下反应1h,得到富马酸单甲酯单酰氯(MMFC);第三步,将MMFC和海藻糖按摩尔比4:1混合,以二氯甲烷为分散剂,在10%无水K2CO3和10%TBAB(w%MMFC)相转移催化下,40℃水浴反应3h,得到富马酸海藻糖甲酯(TMF),收率69.24%.抑菌活性试验结果表明:TMF对混合菌群的生长具有良好的抑制作用,其抑菌能力优于MMF,与苯甲酸相当.  相似文献   

17.
以二苯甲酮腙(BPH)为例,探讨将含有BPH的废渣提纯为符合工业要求的BPH的方法。利用活性炭脱色除杂的特点,通过溶剂的用量、活性炭的用量以及回流时间的筛选,使黄色废渣转变为白色高纯度的产品并得到最佳工艺条件:溶剂环己烷用量13∶1(与废渣质量比)、活性炭用量5%(占废渣质量百分数)、回流时间为2 h。  相似文献   

18.
以丙烯酸(AA)、丙烯酰胺(AM)、(1–二甲氨基–烯丙基)– 膦酸(DMAAPA)及N –烯丙基辛酰亚
胺(NAOI)为原料、亚硫酸氢钠–过硫酸铵为引发剂制备了一种水溶性四元共聚物AA/AM/DMAAPA/NAOI。
单因素实验确立了该共聚物的最佳合成条件:反应温度为45 ?C,引发剂加量为0.3%,pH 为7,
m(AM):m(AA):m(DMAAPA):m(DMAAPA)= 6.000:4.000:0.015:0.030;通过红外光谱(IR)、核磁共振氢谱(1H
NMR)对该共聚物驱油剂的分子结构进行了表征,证明功能单体均已共聚在分子链上;2 000 mg/L 的该共聚物溶液在
120 ?C时的黏度保留率为28.9%,在1 000 s−1 时黏度保留率为18.7%,当NaCl 加量为1.2 g/L 时黏度保留率为22.2%;
室内模拟驱油实验结果表明,在65 ?C 下2 000 mg/L 的该共聚物溶液相对于水驱可提高采收率达到10.54%。  相似文献   

19.
Li2CaSiO4:1%Dy3+发光材料在2500C时的发光强度为室温的62%,加入NH4F助熔剂,不仅提高了Li2CaSiO4:1%Dy3+在常温时的发光强度,2500C时的发光强度也提高到85%。通过红外光谱(FITR)、扫描电镜(SEM)、衰减行为和发光光谱(PL)检测,分析了NH4F提高Li2CaSiO4:1%Dy3+热稳定性的机理。  相似文献   

20.
研究了以三聚氯氰(CNCL)和三溴苯酚(TBP)为原料,以复合物CJ-1为相转移催化剂,以氢氧化钠为缚酸剂,合成溴氮型阻燃剂2,4,6-三(2,4,6~三溴苯氧基)-1,3,5-三嗪(FR-245)的新工艺。结果表明,较适宜的合成工艺条件是:n(CNCL):n(TBP):n(NaOH):n(CJ—1)-1:3.05:3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号