首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Itoh S  Yurimoto H 《Nature》2003,423(6941):728-731
Chondrules and calcium-aluminium-rich inclusions (CAIs) are preserved materials from the early history of the Solar System, where they resulted from thermal processing of pre-existing solids during various flash heating episodes which lasted for several million years. CAIs are believed to have formed about two million years before the chondrules. Here we report the discovery of a chondrule fragment embedded in a CAI. The chondrule's composition is poor in 16O, while the CAI has a 16O-poor melilite (Ca, Mg, Al-Silicate) core surrounded by a 16O-rich igneous mantle. These observations, when combined with the previously reported CAI-bearing chondrules, strongly suggest that the formation of chondrules and CAIs overlapped in time and space, and that there were large fluctuations in the oxygen isotopic compositions in the solar nebula probably synchronizing astrophysical pulses.  相似文献   

2.
Isotopic homogeneity of iron in the early solar nebula.   总被引:14,自引:0,他引:14  
X K Zhu  Y Guo  R K O'Nions  E D Young  R D Ash 《Nature》2001,412(6844):311-313
The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.  相似文献   

3.
Hashizume K  Chaussidon M 《Nature》2005,434(7033):619-622
The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.  相似文献   

4.
Krot AN  Yurimoto H  Hutcheon ID  MacPherson GJ 《Nature》2005,434(7036):998-1001
Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3 million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Delta17O approximately -1 per thousand to -5 per thousand). Spinel and diopside in the CAI cores are 16O-rich (Delta17O up to -20 per thousand), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Delta17O = -8 per thousand to 2 per thousand). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) x 10(-6) and <1.2 x 10(-6). We conclude that these CAIs had chondrule material added to them during a re-melting episode approximately 2 Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 x 10(-5).  相似文献   

5.
Anomalous 17O compositions in massive sulphate deposits on the Earth   总被引:5,自引:0,他引:5  
Bao H  Thiemens MH  Farquhar J  Campbell DA  Lee CC  Heine K  Loope DB 《Nature》2000,406(6792):176-178
The variation of delta 18O that results from nearly all physical, biological and chemical processes on the Earth is approximately twice as large as the variation of delta 17O. This so-called 'mass-dependent' fractionation is well documented in terrestrial minerals. Evidence for 'mass-independent' fractionation (delta 17O = delta 17O-0.52 delta 18O), where deviation from this tight relationship occurs, has so far been found only in meteoritic material and a few terrestrial atmospheric substances. In the rock record it is thought that oxygen isotopes have followed a mass-dependent relationship for at least the past 3.7 billion years, and no exception to this has been encountered for terrestrial solids. Here, however, we report oxygen-isotope values of two massive sulphate mineral deposits, which formed in surface environments on the Earth but show large isotopic anomalies (delta 17O up to 4.6%). These massive sulphate deposits are gypcretes from the central Namib Desert and the sulphate-bearing Miocene volcanic ash-beds in North America. The source of this isotope anomaly might be related to sulphur oxidation reactions in the atmosphere and therefore enable tracing of such oxidation. These findings also support the possibility of a chemical origin of variable isotope anomalies on other planets, such as Mars.  相似文献   

6.
Becker H  Walker RJ 《Nature》2003,425(6954):152-155
The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.  相似文献   

7.
Aléon J  Robert F  Duprat J  Derenne S 《Nature》2005,437(7057):385-388
The origins of the building blocks of the Solar System can be studied using the isotopic composition of early planetary and meteoritic material. Oxygen isotopes in planetary materials show variations at the per cent level that are not related to the mass of the isotopes; rather, they result from the mixture of components having different nucleosynthetic or chemical origins. Isotopic variations reaching orders of magnitude in minute meteoritic grains are usually attributed to stellar nucleosynthesis before the birth of the Solar System, whereby different grains were contributed by different stars. Here we report the discovery of abundant silica-rich grains embedded in meteoritic organic matter, having the most extreme 18O/16O and 17O/16O ratios observed (both approximately 10(-1)) together with a solar silicon isotopic composition. Both O and Si isotopes indicate a single nucleosynthetic process. These compositions can be accounted for by one of two processes: a single exotic evolved star seeding the young Solar System, or irradiation of the circumsolar gas by high energy particles accelerated during an active phase of the young Sun. We favour the latter interpretation, because the observed compositions are usually not expected from nucleosynthetic processes in evolved stars, whereas they are predicted by the selective trapping of irradiation products.  相似文献   

8.
The stable isotope ratios of atmospheric CO(2) ((18)O/(16)O and (13)C/(12)C) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way. Interpreting the (18)O/(16)O variability has proved difficult, however, because oxygen isotopes in CO(2) are influenced by both the carbon cycle and the water cycle. Previous attention focused on the decreasing (18)O/(16)O ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration; a global increase in C(4) crops at the expense of C(3) forests; and environmental conditions, such as atmospheric turbulence and solar radiation, that affect CO(2) exchange between leaves and the atmosphere. Here we present 30 years' worth of data on (18)O/(16)O in CO(2) from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Ni?o/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Ni?o increases the (18)O/(16)O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO(2) by biosphere-atmosphere gas exchange. We show how the decay time of the El Ni?o anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Ni?o events, implying a shorter cycling time of CO(2) with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year, may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO(2). Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.  相似文献   

9.
Ireland TR  Holden P  Norman MD  Clarke J 《Nature》2006,440(7085):776-778
Differences in isotopic abundances between meteorites and rocks on Earth leave unclear the true composition of the gas out of which the Solar System formed. The Sun should have preserved in its outer layers the original composition, and recent work has indicated that the solar wind is enriched in 16O, relative to Earth, Mars and bulk meteorites. This suggests that self-shielding of CO due to photo-dissociation, which is a well understood process in molecular clouds, also led to evolution in the isotopic abundances in the early Solar System. Here we report measurements of oxygen isotopic abundances in lunar grains that were recently exposed to the solar wind. We find that 16O is underabundant, opposite to an earlier finding based on studies of ancient metal grains. Our result, however, is more difficult to understand within the context of current models, because there is no clear way to make 16O more abundant in Solar System rocks than in the Sun.  相似文献   

10.
碳酸盐岩碳、氧同位素分析激光微取样技术是利用高能聚焦激光束与碳酸盐岩样品作用,热分解产生CO2气体,经真空提纯净化后送质谱仪分析测定其C、O同位素值。其空间分辨率优于20μm,能有效地对碳酸盐岩各细微组分结构分别取样,以满足同位素地质学研究的需要。经标样测定,δ13C和δ18O的最好分析精度可达±0.22‰(σ),与常规磷酸分解法分析精度相;δ13C无明显分馏现象,δ18O分馏明显,但对同种矿物是一个常量(方解石偏负1.72‰;白云石偏负1.59‰)易于校正。激光微取样主要应用于碳酸盐储集岩样品碳、氧同位素分析,能较好地解释油气储层孔隙演化和成岩过程。  相似文献   

11.
在5K~6000K温度范围内,分别采用了直和法和McDowell的解析式法计算了12C16O2,16O13C17O,17O13C17O,17O13C18O四种二氧化碳的同位素的转动配分函数,通过对两种方法所得的数据结果进行分析,在5K~3000K温度范围,两者结果符合得很好,而在3000K~6000K温度范围内,对我们讨论的分子来说,对转动配分函数的计算采用解析式法更为适用。  相似文献   

12.
Rohling EJ  Marsh R  Wells NC  Siddall M  Edwards NR 《Nature》2004,430(7003):1016-1021
The period between 75,000 and 20,000 years ago was characterized by high variability in climate and sea level. Southern Ocean records of ice-rafted debris suggest a significant contribution to the sea level changes from melt water of Antarctic origin, in addition to likely contributions from northern ice sheets, but the relative volumes of melt water from northern and southern sources have yet to be established. Here we simulate the first-order impact of a range of relative meltwater releases from the two polar regions on the distribution of marine oxygen isotopes, using an intermediate complexity model. By comparing our simulations with oxygen isotope data from sediment cores, we infer that the contributions from Antarctica and the northern ice sheets to the documented sea level rises between 65,000 and 35,000 years ago were approximately equal, each accounting for a rise of about 15 m. The reductions in Antarctic ice volume implied by our analysis are comparable to that inferred previously for the Antarctic contribution to meltwater pulse 1A (refs 16, 17), which occurred about 14,200 years ago, during the last deglaciation.  相似文献   

13.
Chlorine in the Earth is highly depleted relative to carbonaceous chondrites and solar abundances. Knowledge of the Cl concentrations and distribution on Earth is essential for understanding the origin of these depletions. Large differences in the stable chlorine isotope ratios of meteoritic, mantle and crustal materials have been used as evidence for distinct reservoirs in the solar nebula and to calculate the relative proportions of Cl in the mantle and crust. Here we report that large isotopic differences do not exist, and that carbonaceous chondrites, mantle and crust all have the same 37Cl/35Cl ratios. We have further analysed crustal sediments from the early Archaean era to the Recent epoch and find no systematic isotopic variations with age, demonstrating that the mantle and crust have always had the same delta37Cl value. The similarity of mantle, crust and carbonaceous chondrites establishes that there were no nebular reservoirs with distinct isotopic compositions, no isotopic fractionation during differentiation of the Earth and no late (post-core formation) Cl-bearing volatile additions to the crustal veneer with a unique isotopic composition.  相似文献   

14.
Cuzzi JN  Alexander CM 《Nature》2006,441(7092):483-485
Chondrules are millimetre-sized spherules (mostly silicate) that dominate the texture of primitive meteorites. Their formation mechanism is debated, but their sheer abundance suggests that the mechanism was both energetic and ubiquitous in the early inner Solar System. The processes suggested--such as shock waves, solar flares or nebula lightning--operate on different length scales that have been hard to relate directly to chondrule properties. Chondrules are depleted in volatile elements, but surprisingly they show little evidence for the associated loss of lighter isotopes one would expect. Here we report a model in which molten chondrules come to equilibrium with the gas that was evaporated from other chondrules, and which explains the observations in a natural way. The regions within which the chondrules formed must have been larger than 150-6,000 km in radius, and must have had a precursor number density of at least 10 m(-3). These constraints probably exclude nebula lightning, and also make formation far from the nebula midplane problematic. The wide range of chondrule compositions may be the result of different combinations of the local concentrations of precursors and the local abundance of water ice or vapour.  相似文献   

15.
Nagashima K  Krot AN  Yurimoto H 《Nature》2004,428(6986):921-924
Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula.  相似文献   

16.
使用高纯同位素物质精确配制同位素混合物,作为标准物,确定质谱仪器的系统误差。本工作用天然丰度水定量稀释高浓重氧水,制取从0.1982至96.92原子%~(18)O的氧同位素标准水样,用来校准质谱仪器。 实验采用BrF_5将水样转化成O_2。用质谱峰高法测定(18)~O和(17)~O丰度。比较质谱测定值和计算得到的丰度值C,求出质谱仪固有偏差校正系数K、并得到K与C的线性相关关系。 共得到16个具有准确丰度值的氧同位素标准水样。  相似文献   

17.
Bizzarro M  Baker JA  Haack H 《Nature》2004,431(7006):275-278
Primitive or undifferentiated meteorites (chondrites) date back to the origin of the Solar System, and thus preserve a record of the physical and chemical processes that occurred during the earliest evolution of the accretion disk surrounding the young Sun. The oldest Solar System materials present within these meteorites are millimetre- to centimetre-sized calcium-aluminium-rich inclusions (CAIs) and ferromagnesian silicate spherules (chondrules), which probably originated by thermal processing of pre-existing nebula solids. Chondrules are currently believed to have formed approximately 2-3 million years (Myr) after CAIs (refs 5-10)--a timescale inconsistent with the dynamical lifespan of small particles in the early Solar System. Here, we report the presence of excess (26)Mg resulting from in situ decay of the short-lived (26)Al nuclide in CAIs and chondrules from the Allende meteorite. Six CAIs define an isochron corresponding to an initial (26)Al/(27)Al ratio of (5.25 +/- 0.10) x 10(-5), and individual model ages with uncertainties as low as +/- 30,000 years, suggesting that these objects possibly formed over a period as short as 50,000 years. In contrast, the chondrules record a range of initial (26)Al/(27)Al ratios from (5.66 +/- 0.80) to (1.36 +/- 0.52) x 10(-5), indicating that Allende chondrule formation began contemporaneously with the formation of CAIs, and continued for at least 1.4 Myr. Chondrule formation processes recorded by Allende and other chondrites may have persisted for at least 2-3 Myr in the young Solar System.  相似文献   

18.
Kaufman AJ  Xiao S 《Nature》2003,425(6955):279-282
Solar luminosity on the early Earth was significantly lower than today. Therefore, solar luminosity models suggest that, in the atmosphere of the early Earth, the concentration of greenhouse gases such as carbon dioxide and methane must have been much higher. However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion microprobe analyses of the carbon isotopes in individual organic-walled microfossils extracted from a Proterozoic ( approximately 1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope fractionation in these large, morphologically complex microfossils suggest elevated levels of carbon dioxide in the ancient atmosphere--between 10 and 200 times the present atmospheric level. Our results indicate that carbon dioxide was an important greenhouse gas during periods of lower solar luminosity, probably dominating over methane after the atmosphere and hydrosphere became pervasively oxygenated between 2 and 2.2 gigayears ago.  相似文献   

19.
The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.  相似文献   

20.
Diatom oxygen isotopes have been widely applied in quantitative reconstruction of the paleoclimate and paleoenvironment, but have rarely been reported in China. In the present study, Lake Sihailongwan in Northeast China was selected for detailed investigation of oxygen isotopic fractionation between diatom frustules and lake water induced by growth temperature. This study involved a 2-year period of field monitoring of the lake water temperature at multiple depths and biweekly collections of traps for both sediment and water at shallow and bottom depths (7 and 49 m below the lake surface, respectively), diatom separation and purification of the trap sediments, and oxygen isotope measurement for diatom silica and lake water samples. The conditioned experiment conducted herein demonstrated that the laboratory device, methods and techniques used in this study were capable of generating reliable data for the typical oxygen isotope composition of diatom frustules. The data obtained revealed a prominent linear relationship between the oxygen isotope composition of the modern diatom and lake temperature during growth. The fractionation coefficient was about −0.185‰/°C−0.238‰/°C in the temperature range of 3.6–24°C, which is consistent with the observations from various aquatic environments and laboratory culture with different diatom taxa. These findings provide strong support for the dominant control of the growth temperature on the oxygen isotope fractionation between the diatom frustules and ambient water. A notable difference in the fractionation coefficient was observed between the surface and bottom diatom oxygen isotopes, suggesting that various depositional processes and taphonomic effects influenced the surface and bottom trap samples. Another factor leading to this difference may be that enrichment by evaporation and dilution by rainfall have a stronger influence on the surface. Overall, the results presented here demonstrate significant progress in evaluation of diatom oxygen isotopes in China and draw attention to the differences between surface and bottom diatom oxygen isotope compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号