首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The source rupture process of the M S7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations. Results reveal that the rupture process of the Lushan M S7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes. The whole rupture process lasted 36 s and most of the moment was released within the first 13 s. The total released moment is 1.9×1019N m with M W=6.8. Rupture propagated upwards and bilaterally to both sides from the initial point, resulting in a large slip region of 40 km×30 km, with the maximum slip of 1.8 m, located above the initial point. No surface displacement was estimated around the epicenter, but displacement was observed about 20 km NE and SW directions of the epicenter. Both showed slips of less than 40 cm. The rupture suddenly stopped at 20 km NE of the initial point. This was consistent with the aftershock activity. This phenomenon indicates the existence of significant variation of the medium or tectonic structure, which may prevent the propagation of the rupture and aftershock activity. The earthquake risk of the left segment of Qianshan fault is worthy of attention.  相似文献   

2.
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.  相似文献   

3.
Plateau 'pop-up' in the great 1897 Assam earthquake   总被引:5,自引:0,他引:5  
Bilham R  England P 《Nature》2001,410(6830):806-809
The great Assam earthquake of 12 June 1897 reduced to rubble all masonry buildings within a region of northeastern India roughly the size of England, and was felt over an area exceeding that of the great 1755 Lisbon earthquake. Hitherto it was believed that rupture occurred on a north-dipping Himalayan thrust fault propagating south of Bhutan. But here we show that the northern edge of the Shillong plateau rose violently by at least 11 m during the Assam earthquake, and that this was due to the rupture of a buried reverse fault approximately 110 km in length and dipping steeply away from the Himalaya. The stress drop implied by the rupture geometry and the prodigious fault slip of 18 +/- 7 m explains epicentral accelerations observed to exceed 1g vertically and surface velocities exceeding 3 m s-1 (ref. 1). This quantitative observation of active deformation of a 'pop-up' structure confirms that faults bounding such structures can penetrate the whole crust. Plateau uplift in the past 2-5 million years has caused the Indian plate to contract locally by 4 +/- 2 mm yr-1, reducing seismic risk in Bhutan but increasing the risk in northern Bangladesh.  相似文献   

4.
This paper presents the coseismic displacement and preseismic deformation fields of the Lushan M S7.0 earthquake that occurred on April 20, 2013. The results are based on GPS observations along the Longmenshan fault and within its vicinity. The coseismic displacement and preseismic GPS results indicate that in the strain release of this earthquake, the thrust rupture is dominant and the laevorotation movement is secondary. Furthermore, we infer that any possible the rupture does not reach the earth’s surface, and the seismogenic fault is most likely one fault to the east of the Guanxian-Anxian fault. Some detailed results are obtainable. (1) The southern segment of the Longmenshan fault is locked preceding the Lushan earthquake. After the Wenchuan earthquake, the strain accumulation rate in the southeast direction accelerates in the epicenter of the Lushan earthquake, and the angle between the principal compressional strain and the seismogenic fault indicates that a sinistral deformation background in the direction of the seismogenic fault precedes the Lushan earthquake. Therefore, it is evident that the Wenchuan M S8.0 earthquake accelerated the pregnancy of the Lushan earthquake. (2) The coseismic displacements reflected by GPS data are mainly located in a region that is 230 km (NW direction) × 100 km (SW direction), and coseismic displacements larger than 10 mm lie predominantly in a 100-km region (NW direction). (3) On a large scale, the coseismic displacement shows thrust characteristics, but the associated values are remarkably small in the near field (within 70 km) of the earthquake fault. Meanwhile, the thrust movement in this 70-km region does not correspond with the attenuation characteristics of the strain release, indicating that the rupture of this earthquake does not reach the earth’s surface. (4) The laevorotation movements are remarkable in the 50-km region, which is located in the hanging wall that is close to the earthquake fault, and the corresponding values in this case correlate with the attenuation characteristics of the strain release.  相似文献   

5.
基于有限断层反演得到的滑移数据,用独立滑移单元的数量表征地震破裂复杂度,据此对大地震破裂进行分组,并研究破裂复杂度与主要震源参数之间的关系,探讨破裂复杂度的全球及区域空间分布特征。结果表明,矩震级很大(Mw≥8.5)的事件,地震破裂复杂度更大;破裂复杂度较高的地震分布在浅层地壳(≤30km)内的概率最大,随着震源深度增加,破裂复杂度对震源深度的敏感性逐渐消失;走滑断层机制占比较大的事件,破裂复杂度较高;破裂复杂度与地震能矩比没有明确的关系;破裂复杂度的空间分布特征与区域地质构造环境相关。破裂复杂度的空间分布特征可以分为3类,第一类是板块之间简单碰撞产生的俯冲带,板块交界处的滑动速率和方向较为一致,这种情形下以比较简单的事件类型为主;第二类是多板块交界处,或者板块交界处的滑动速率和方向在整个区域内存在差异;第三类是大陆内部的强烈挤压地带。与第一类空间分布特征相比,第二类和第三类情形下破裂复杂度相对更高。地震破裂复杂度可以在一定程度上反映区域应力场的复杂性。  相似文献   

6.
A detailed 3-D P-wave velocity model of the crust and uppermost mantle under the capitol region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48750 precise P-wave arrival time data from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by 123 seismic stations. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new information on the geological structure and complex seismotectonics of this region. Different patterns of velocity structures show up in the North China Basin, the Taihangshan and the Yanshan Mountainous areas. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts, respectively, which are oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major structure and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity anomalies. Most of large earthquakes, such as the 1976 Tangshan earthquake (M 7.8) and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-velocity areas in the upper to middle crust. However, in the lower crust to the uppermost mantle under the source zones of the large earthquakes, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids, just like the 1995 Kobe earthquake (M 7.2) and the 2001 Indian Bhuj earthquake (M 7.8). The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

7.
Predicting the endpoints of earthquake ruptures   总被引:8,自引:0,他引:8  
Wesnousky SG 《Nature》2006,444(7117):358-360
The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate.  相似文献   

8.
Ishii M  Shearer PM  Houston H  Vidale JE 《Nature》2005,435(7044):933-936
The disastrous Sumatra-Andaman earthquake of 26 December 2004 was one of the largest ever recorded. The damage potential of such earthquakes depends on the extent and magnitude of fault slip. The first reliable moment magnitude estimate of 9.0 was obtained several hours after the Sumatra-Andaman earthquake, but more recent, longer-period, normal-mode analyses have indicated that it had a moment magnitude of 9.3, about 2.5 times larger. Here we introduce a method for directly imaging earthquake rupture that uses the first-arriving compressional wave and is potentially able to produce detailed images within 30 min of rupture initiation. We used the Hi-Net seismic array in Japan as an antenna to map the progression of slip by monitoring the direction of high-frequency radiation. We find that the rupture spread over the entire 1,300-km-long aftershock zone by propagating northward at roughly 2.8 km s(-1) for approximately 8 minutes. Comparisons with the aftershock areas of other great earthquakes indicate that the Sumatra-Andaman earthquake did indeed have a moment magnitude of approximately 9.3. Its rupture, in both duration and extent, is the longest ever recorded.  相似文献   

9.
Particle size and energetics of gouge from earthquake rupture zones   总被引:6,自引:0,他引:6  
Wilson B  Dewers T  Reches Z  Brune J 《Nature》2005,434(7034):749-752
Grain size reduction and gouge formation are found to be ubiquitous in brittle faults at all scales, and most slip along mature faults is observed to have been localized within gouge zones. This fine-grain gouge is thought to control earthquake instability, and thus understanding its properties is central to an understanding of the earthquake process. Here we show that gouge from the San Andreas fault, California, with approximately 160 km slip, and the rupture zone of a recent earthquake in a South African mine with only approximately 0.4 m slip, display similar characteristics, in that ultrafine grains approach the nanometre scale, gouge surface areas approach 80 m2 g(-1), and grain size distribution is non-fractal. These observations challenge the common perception that gouge texture is fractal and that gouge surface energy is a negligible contributor to the earthquake energy budget. We propose that the observed fine-grain gouge is not related to quasi-static cumulative slip, but is instead formed by dynamic rock pulverization during the propagation of a single earthquake.  相似文献   

10.
The mainshock of April 20, 2013 Sichuan Lushan M S7.0 earthquake was relocated using a 3-D velocity model. Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake. The locations of 2405 aftershocks were determined. The location errors in E-W, N-S and U-D direction were 0.30, 0.29 and 0.59 km on average, respectively. The location of the mainshock is 102.983°E, 30.291°N and the focal depth is 17.6 km. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth profiles show fault planes dip to the northwest, manifested itself as a listric thrust fault. The dip angle is steep in the shallow crust and gentle in the deep crust. Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault, the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We speculate it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.  相似文献   

11.
The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that approximately 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M(w) = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M(w) = 8.7 Nias-Simeulue earthquake.  相似文献   

12.
Earthquakes as beacons of stress change   总被引:2,自引:0,他引:2  
Seeber L  Armbruster JG 《Nature》2000,407(6800):69-72
Aftershocks occurring on faults in the far-field of a large earthquake rupture can generally be accounted for by changes in static stress on these faults caused by the rupture. This implies that faults interact, and that the timing of an earthquake can be affected by previous nearby ruptures. Here we explore the potential of small earthquakes to act as 'beacons' for the mechanical state of the crust. We investigate the static-stress changes resulting from the 1992 Landers earthquake in southern California which occurred in an area of high seismic activity stemming from many faults. We first gauge the response of the regional seismicity to the Landers event with a new technique, and then apply the same method to the inverse problem of determining the slip distribution on the main rupture from the seismicity. Assuming justifiable parameters, we derive credible matches to slip profiles obtained directly from the Landers mainshock. Our results provide a way to monitor mechanical conditions in the upper crust, and to investigate processes leading to fault failure.  相似文献   

13.
Fracture surface energy of the Punchbowl fault, San Andreas system   总被引:3,自引:0,他引:3  
Chester JS  Chester FM  Kronenberg AK 《Nature》2005,437(7055):133-136
Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.  相似文献   

14.
As revealed by field investigations, the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake, Qinghai is a char-acteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures, with an overall strike of 310°–320° and a total length of 31 km. In addition, an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town; if this site is taken as the north end of the rupture zone, then the rupture had a total length of ~51 km. The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures, with a measured maximum horizontal displacement of 1.8 m. The surface rupture zone extends along the mapped Garzê-Yushu Fault, which implicates it as the seismogenic fault for this earthquake. Historically, a few earthquakes with a magnitude of about 7 have occurred along the fault, and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here. Similar to the seismogenic process of the 2008 Wenchuan earthquake, the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau. However, in contrast with the Wenchuan earthquake, the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.  相似文献   

15.
Ammon CJ  Kanamori H  Lay T 《Nature》2008,451(7178):561-565
Temporal variations of the frictional resistance on subduction-zone plate boundary faults associated with the stick-slip cycle of large interplate earthquakes are thought to modulate the stress regime and earthquake activity within the subducting oceanic plate. Here we report on two great earthquakes that occurred near the Kuril islands, which shed light on this process and demonstrate the enhanced seismic hazard accompanying triggered faulting. On 15 November 2006, an event of moment magnitude 8.3 ruptured the shallow-dipping plate boundary along which the Pacific plate descends beneath the central Kuril arc. The thrust ruptured a seismic gap that previously had uncertain seismogenic potential, although the earlier occurrence of outer-rise compressional events had suggested the presence of frictional resistance. Within minutes of this large underthrusting event, intraplate extensional earthquakes commenced in the outer rise region seaward of the Kuril trench, and on 13 January 2007, an event of moment magnitude 8.1 ruptured a normal fault extending through the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes. This energetic earthquake sequence demonstrates the stress transfer process within the subducting lithosphere, and the distinct rupture characteristics of these great earthquakes illuminate differences in seismogenic properties and seismic hazard of such interplate and intraplate faults.  相似文献   

16.
J S Floyd  J C Mutter  A M Goodliffe  B Taylor 《Nature》2001,411(6839):779-783
Determining the composition and physical properties of shallow-dipping, active normal faults (dips < 35 degrees with respect to the horizontal) is important for understanding how such faults slip under low resolved shear stress and accommodate significant extension of the crust and lithosphere. Seismic reflection images and earthquake source parameters show that a magnitude 6.2 earthquake occurred at about 5 km depth on or close to a normal fault with a dip of 25-30 degrees located ahead of a propagating spreading centre in the Woodlark basin. Here we present results from a genetic algorithm inversion of seismic reflection data, which shows that the fault at 4-5 km depth contains a 33-m-thick layer with seismic velocities of about 4.3 km s(-1), which we interpret to be composed of serpentinite fault gouge. Isolated zones exhibit velocities as low as approximately 1.7 km s(-1) with high porosities, which we suggest are maintained by high fluid pressures. We propose that hydrothermal fluid flow, possibly driven by a deep magmatic heat source, and high extensional stresses ahead of the ridge tip have created conditions for fault weakness and strain localization on the low-angle normal fault.  相似文献   

17.
Di Toro G  Goldsby DL  Tullis TE 《Nature》2004,427(6973):436-439
An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.  相似文献   

18.
基于覆盖巴姆地震的先进合成孔径雷达(advanced synthetic aperture radar,ASAR)数据,使用差分干涉测量(differenti-al interferometric synthetic aperture radar,D-InSAR)方法获取卫星视线向(line of sight,LOS)向同震形变场,针对形变场中存在的失相干和地形误差等问题,分别使用非线性支持向量机方法(support vector regression,SVR)进行失相干恢复;并基于形变场经纬度与数字地形高程模型(digital elevation model,DEM)建立函数模型,去除残余的地形误差,从而获取完整的形变场.使用多种干涉雷达(interferometric synthetic aperture radar,InSAR)技术联合的方法获取巴姆地震的三维形变场.结果表明:SVR方法可以较好地恢复失相干区域,而且巴姆地震发震构造是近南北向断层,主要以右旋走滑运动为主.  相似文献   

19.
Data collected at approximately 60 Global Positioning System (GPS) sites in southeast Asia show the crustal deformation caused by the 26 December 2004 Sumatra-Andaman earthquake at an unprecedented large scale. Small but significant co-seismic jumps are clearly detected more than 3,000 km from the earthquake epicentre. The nearest sites, still more than 400 km away, show displacements of 10 cm or more. Here we show that the rupture plane for this earthquake must have been at least 1,000 km long and that non-homogeneous slip is required to fit the large displacement gradients revealed by the GPS measurements. Our kinematic analysis of the GPS recordings indicates that the centroid of released deformation is located at least 200 km north of the seismological epicentre. It also provides evidence that the rupture propagated northward sufficiently fast for stations in northern Thailand to have reached their final positions less than 10 min after the earthquake, hence ruling out the hypothesis of a silent slow aseismic rupture.  相似文献   

20.
Freed AM  Lin J 《Nature》2001,411(6834):180-183
Stress changes in the crust due to an earthquake can hasten the failure of neighbouring faults and induce earthquake sequences in some cases. The 1999 Hector Mine earthquake in southern California (magnitude 7.1) occurred only 20 km from, and 7 years after, the 1992 Landers earthquake (magnitude 7.3). This suggests that the Hector Mine earthquake was triggered in some fashion by the earlier event. But uncertainties in the slip distribution and rock friction properties associated with the Landers earthquake have led to widely varying estimates of both the magnitude and sign of the resulting stress change that would be induced at the location of the Hector Mine hypocentre-with estimates varying from -1.4 bar (ref. 6) to +0.5 bar (ref. 7). More importantly, coseismic stress changes alone cannot satisfactorily explain the delay of 7 years between the two events. Here we present the results of a three-dimensional viscoelastic model that simulates stress transfer from the ductile lower crust and upper mantle to the brittle upper crust in the 7 years following the Landers earthquake. Using viscoelastic parameters that can reproduce the observed horizontal surface deformation following the Landers earthquake, our calculations suggest that lower-crustal or upper-mantle flow can lead to postseismic stress increases of up to 1-2 bar at the location of the Hector Mine hypocentre during this time period, contributing to the eventual occurrence of the 1999 Hector Mine earthquake. These results attest to the importance of considering viscoelastic processes in the assessment of seismic hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号