首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spindle checkpoint is an important biochemical signaling cascade during mitosis which monitors the fidelity of chromosome segregation, and is mediated by protein kinases Mps1 and Bub1/BubR1. Our recent studies show that kinesin-related motor protein CENP-E interacts with BubR1 and participates in spindle checkpoint signaling. To elucidate the molecular mechanisms underlying spindle checkpoint signaling, we carried out proteomic dissection of human cell kinetochore and revealed protein kinase TTK, human homologue of yeast Mps1. Our studies show that TTK is localized to the kinetochore of human cells, and interacts with CENP-E, suggesting that TTK may play an important role in chromosome segregation during mitosis.  相似文献   

2.
The kinetochore is a specialized structure at the centromere of eukaryotic chromosomes that attaches chromosomes to the mitotic spindle. Recently, several lines of evidence have suggested that kinetochores may have more than a passive role in the movement of chromosomes during mitosis and meiosis. Kinetochores seem to attract and 'capture' microtubules that grow from the spindle poles and microtubules may lengthen or shorten by the addition or subtraction of tubulin subunits at their kinetochore-associated ends. An attractive hypothesis is that kinetochores function as 'self-contained engines running on a microtubule track'. Here, we show that kinetochores can be experimentally detached from chromosomes when caffeine is applied to Chinese hamster ovary cells that are arrested in the G1/S phase of the cell cycle. The detached kinetochore fragments can still interact with spindle microtubules and complete all the mitotic movements in the absence of other chromosomal components. As these cells enter mitosis before DNA synthesis is completed, chromosome replication need not be a prerequisite for the pairing, alignment and segregation of kinetochores.  相似文献   

3.
Tada K  Susumu H  Sakuno T  Watanabe Y 《Nature》2011,474(7352):477-483
Chromosome structure is dynamically regulated during cell division, and this regulation is dependent, in part, on condensin. The localization of condensin at chromosome arms is crucial for chromosome partitioning during anaphase. Condensin is also enriched at kinetochores but its precise role and loading machinery remain unclear. Here we show that fission yeast (Schizosaccharomyces pombe) kinetochore proteins Pcs1 and Mde4--homologues of budding yeast (Saccharomyces cerevisiae) monopolin subunits and known to prevent merotelic kinetochore orientation--act as a condensin 'recruiter' at kinetochores, and that condensin itself may act to clamp microtubule binding sites during metaphase. In addition to the regional recruitment factors, overall condensin association with chromatin is governed by the chromosomal passenger kinase Aurora B. Aurora-B-dependent phosphorylation of condensin promotes its association with histone H2A and H2A.Z, which we identify as conserved chromatin 'receptors' of condensin. Condensin phosphorylation and its deposition onto chromosome arms reach a peak during anaphase, when Aurora B kinase relocates from centromeres to the spindle midzone, where the separating chromosome arms are positioned. Our results elucidate the molecular basis for the spatiotemporal regulation of mitotic chromosome architecture, which is crucial for chromosome partitioning.  相似文献   

4.
Contrary to the traditional view that microtubules pull chromosomes polewards during the anaphase stage of meiotic and mitotic cell divisions, new evidence suggests that the chromosome movements are driven by a motor located at the kinetochore. The process of chromosome segregation involves proper arrangement of kinetochores for spindle attachment, followed by spindle attachment and chromosome movement. Mechanisms in Drosophila for chromosome segregation in meiosis differ in males and females, implying the action of different gene products in the two sexes. A product encoded at the claret locus in Drosophila is required for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. Here we show that the predicted amino-acid sequence of this product is related to the heavy chain of kinesin. The conserved region corresponds to the kinesin motor domain and includes the ATP-binding site and a region that can bind microtubules. A second region contains a leucine repeat motif which may mediate protein-subunit interactions necessary for attachment of chromosomes to the spindle. The mutant phenotype of chromosome nondisjunction and loss, and its similarity to the kinesin ATP-binding domain, suggest that the product encoded at claret not only stabilizes chromosome attachments to the spindle, but may also be a motor that drives chromosome segregation in female meiosis.  相似文献   

5.
This paper investigates the effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation. Full-length cenpb cDNA was subcloned into pBI-EGFP eukaryotic expression vector in both sense and antisense orientation. HeLa-Tet-Off cells were transfected with sense or antisense cenpb vectors. Sense transfection of HeLa-Tet-Off cells resulted in the formation of a large centromere/kinetochore complex, and apoptosis of cells following several times of cell division. A stable antisense cenpb transfected cell line, named HACPB, was ob- tained. The centromere/kinetochore complex of HACPB cells became smaller than control HeLa-Tet-Off cells and scattered, and the expression of CENP-B was down-regulated. In addition, delayed cell cycle progression, inhibited malignant phenotype, restrained ability of tumor formation in nude mice, and delayed entry from G2fM phase into next G1 phase were observed in HACPB cells. Furthermore, the expression of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) were modulated during different phases of the cell cycle. CENP-B is an essential protein for the maintenance of the structure and function of centromere/kinetochore complex, and plays important roles in cell cycle regulation.  相似文献   

6.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

7.
Kitajima TS  Kawashima SA  Watanabe Y 《Nature》2004,427(6974):510-517
Meiosis comprises a pair of specialized nuclear divisions that produce haploid germ cells. To accomplish this, sister chromatids must segregate together during the first meiotic division (meiosis I), which requires that sister chromatid cohesion persists at centromeres. The factors that protect centromeric cohesion during meiosis I have remained elusive. Here we identify Sgo1 (shugoshin), a protector of the centromeric cohesin Rec8 in fission yeast. We also identify a homologue of Sgo1 in budding yeast. We provide evidence that shugoshin is widely conserved among eukaryotes. Moreover, we identify Sgo2, a paralogue of shugoshin in fission yeast, which is required for faithful mitotic chromosome segregation. Localization of Sgo1 and Sgo2 at centromeres requires the kinase Bub1, identifying shugoshin as a crucial target for the kinetochore function of Bub1. These findings provide insights into the evolution of meiosis and kinetochore regulation during mitosis and meiosis.  相似文献   

8.
During cell division, sister chromosomes segregate from each other on a microtubule-based structure called the mitotic spindle. Proteins bind to the centromere, a region of chromosomal DNA, to form the kinetochore, which mediates chromosome attachment to the mitotic spindle microtubules. In the budding yeast Saccharomyces cerevisiae, genetic analysis has shown that the 28-basepair (bp) CDEIII region of the 125-bp centromere DNA sequence (CEN sequence) is the main region controlling chromosome segregation in vivo. Therefore it is likely that proteins binding to the CDEIII region link the centromeres to the microtubules during mitosis. A complex of proteins (CBF3) that binds specifically to the CDEIII DNA sequence has been isolated by affinity chromatography. Here we describe kinetochore function in vitro. The CBF3 complex can link DNA to microtubules, and the complex contains a minus-end-directed microtubule-based motor. We suggest that microtubule-based motors form the fundamental link between microtubules and chromosomes at mitosis.  相似文献   

9.
Reddy SK  Rape M  Margansky WA  Kirschner MW 《Nature》2007,446(7138):921-925
Eukaryotic cells rely on a surveillance mechanism known as the spindle checkpoint to ensure accurate chromosome segregation. The spindle checkpoint prevents sister chromatids from separating until all kinetochores achieve bipolar attachments to the mitotic spindle. Checkpoint proteins tightly inhibit the anaphase-promoting complex (APC), a ubiquitin ligase required for chromosome segregation and progression to anaphase. Unattached kinetochores promote the binding of checkpoint proteins Mad2 and BubR1 to the APC-activator Cdc20, rendering it unable to activate APC. Once all kinetochores are properly attached, however, cells inactivate the checkpoint within minutes, allowing for the rapid and synchronous segregation of chromosomes. How cells switch from strong APC inhibition before kinetochore attachment to rapid APC activation once attachment is complete remains a mystery. Here we show that checkpoint inactivation is an energy-consuming process involving APC-dependent multi-ubiquitination. Multi-ubiquitination by APC leads to the dissociation of Mad2 and BubR1 from Cdc20, a process that is reversed by a Cdc20-directed de-ubiquitinating enzyme. The mutual regulation between checkpoint proteins and APC leaves the cell poised for rapid checkpoint inactivation and ensures that chromosome segregation promptly follows the completion of kinetochore attachment. In addition, our results suggest a mechanistic basis for how cancer cells can have a compromised spindle checkpoint without corresponding mutations in checkpoint genes.  相似文献   

10.
During mitosis, the mitotic spindle, a bipolar structure composed of microtubules (MTs) and associated motor proteins, segregates sister chromatids to daughter cells. Initially some MTs emanating from one centrosome attach to the kinetochore at the centromere of one of the duplicated chromosomes. This attachment allows rapid poleward movement of the bound chromosome. Subsequent attachment of the sister kinetochore to MTs growing from the other centrosome results in the bi-orientation of the chromosome, in which interactions between kinetochores and the plus ends of MTs are formed and stabilized. These processes ensure alignment of chromosomes during metaphase and their correct segregation during anaphase. Although many proteins constituting the kinetochore have been identified and extensively studied, the signalling responsible for MT capture and stabilization is unclear. Small GTPases of the Rho family regulate cell morphogenesis by organizing the actin cytoskeleton and regulating MT alignment and stabilization. We now show that one member of this family, Cdc42, and its effector, mDia3, regulate MT attachment to kinetochores.  相似文献   

11.
It is generally believed that the equal distribution of genetic materials to two daughter cells during mitosis is the key to cell health and development. During the dynamic process, spindle checkpoint plays a very important role in chromosome movements and final sister chromatid separation. The equal and precise segregation of chromosomes contributes to the genomic stability while aberrant separations result in chromosome instability that causes pathogenesis of certain diseases such as Down’s syndrome and cancers. Kinetochore and its regulatory proteins consist of the spindle checkpoint and determine the spatial and temporal orders of chromosome segregation.  相似文献   

12.
Cell division   总被引:4,自引:0,他引:4  
Scholey JM  Brust-Mascher I  Mogilner A 《Nature》2003,422(6933):746-752
In creating the mitotic spindle and the contractile ring, natural selection has engineered fascinating precision machines whose movements depend upon forces generated by ensembles of cytoskeletal proteins. These machines segregate chromosomes and divide the cell with high fidelity. Current research on the mechanisms and regulation of spindle morphogenesis, chromosome motility and cytokinesis emphasizes how ensembles of dynamic cytoskeletal polymers and multiple motors cooperate to generate the forces that guide the cell through mitosis and cytokinesis.  相似文献   

13.
Heterochromatin links to centromeric protection by recruiting shugoshin   总被引:1,自引:0,他引:1  
Yamagishi Y  Sakuno T  Shimura M  Watanabe Y 《Nature》2008,455(7210):251-255
The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.  相似文献   

14.
CENP-E is a putative kinetochore motor that accumulates just before mitosis.   总被引:57,自引:0,他引:57  
T J Yen  G Li  B T Schaar  I Szilak  D W Cleveland 《Nature》1992,359(6395):536-539
The mechanics of chromosome movement, mitotic spindle assembly and spindle elongation have long been central questions of cell biology. After attachment in prometaphase of a microtubule from one pole, duplicated chromosome pairs travel towards the pole in a rapid but discontinuous motion. This is followed by a slower congression towards the midplate as the chromosome pair orients with each kinetochore attached to the microtubules from the nearest pole. The pairs disjoin at anaphase and translocate to opposite poles and the interpolar distance increases. Here we identify CENP-E as a kinesin-like motor protein (M(r) 312,000) that accumulates in the G2 phase of the cell cycle. CENP-E associates with kinetochores during congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is likely to be one of the motors responsible for mammalian chromosome movement and/or spindle elongation.  相似文献   

15.
首次在硬化性肌膜炎患者血清中发现有抗着丝点抗体(ACA),可使 Hep-2间期细胞核及 M 期细胞染色体着丝点显示分散的荧光斑点.用 ACA 血清对小鼠几种器官的冰冻切片或涂片进行免疫荧光研究,可见无论幼龄或老龄小鼠的肝、十二指肠、脑皮层细胞及老龄小鼠睾丸生精细胞均有明亮的荧光斑点.绒毛顶端细胞呈均匀性荧光.  相似文献   

16.
利用间接免疫萎光标记技术研究Ser10磷酸化的组蛋白H3和微管蛋白在小麦根尖细胞中有丝分裂过程中的动态分布情况.结果显示在小麦根尖细胞有丝分裂过程中Ser10磷酸化的组蛋白H3的出现和消失与染色体的凝集和解凝集的过程存在时空上的相关性,在有丝分裂的过程中这种蛋白在着经线粒上的定位有有助于染色体向两极移动.研究结果还表明,在有丝分裂过程中,微管蛋白发生了重组,成束的垂直排列在赤道板的两侧,协助细胞有丝分裂过程的顺利完成.  相似文献   

17.
ACA的间接免疫荧光法显示多种动、植物细胞着丝点   总被引:2,自引:1,他引:2  
用硬化性肌膜炎病人ACA血清的间接免疫荧光法显示了多种动、植物细胞的着丝点,其中包括Hep-2,文昌鱼、水螅、螽蜥、蚯蚓、草履虫、洋葱、大蒜,吊兰、蚕豆和葫芦藓等。表明在进化不同阶段的动、植物细胞均有同源的、高度保守性的着丝点蛋白。  相似文献   

18.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores   总被引:98,自引:0,他引:98  
E R Steuer  L Wordeman  T A Schroer  M P Sheetz 《Nature》1990,345(6272):266-268
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos, but not in mammalian cells. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.  相似文献   

19.
准确的染色体分离依赖于有丝分裂过程的精确调控,包括有丝分裂的时间,及纺锤体检查点的正确调控等。通过动态观察有丝分裂染色体的运动可对上述研究进行精确定量。结果显示,我们利用逆转录病毒系统成功构建了稳定融合表达绿色荧光蛋白GFP-H2B的HeLa细胞系,结合细胞同步化方法,建立了一套利用活细胞荧光共聚焦显微镜观察HeLa细胞有丝分裂的实验体系。  相似文献   

20.
准确的染色体分离依赖于有丝分裂过程的精确调控,包括有丝分裂的时间,及纺锤体检查点的正确调控等。通过动态观察有丝分裂染色体的运动可对上述研究进行精确定量。结果显示,利用逆转录病毒系统成功构建了稳定融合表达绿色荧光蛋白GFP—H2B的HeLa细胞系,结合细胞同步化方法,建立了一套利用活细胞荧光共聚焦显微镜观察HeLa细胞有丝分裂的实验体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号