首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
    
This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction‐of‐change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub‐period 8 April 1998 to 5 February 2002 has been reserved for out‐of‐sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability, after the inclusion of transaction costs, during bear market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy‐and‐hold strategy. We suggest that our findings can be justified by invoking either the ‘volatility feedback’ theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
    
We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号