共查询到18条相似文献,搜索用时 0 毫秒
1.
A two‐step procedure to produce a statistical measure of the probability of being in an accelerating or decelerating phase of economic activity is proposed. It consists of, first, an extraction of the individual linear innovations of a set of relevant macroeconomic variables whose signs are accumulated into a qualitative vector process and, second, of a factor analysis applied to this vector. The factor process is a two‐state Markov process of order one whose states are described as favourable and unfavourable. Estimated on French business surveys, this measure appears to be a competitive coincident indicator. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
2.
Ginters Buss 《Journal of forecasting》2016,35(3):206-216
The paper studies the regularized direct filter approach as a tool for real‐time signal extraction using high‐dimensional datasets. It is shown that the filter is able to process high‐dimensional datasets by controlling for effective degrees of freedom through longitudinal and cross‐sectional regularization. The paper illustrates the merit of the proposed approach by tracking the medium‐ to long‐run component in euro area gross domestic product growth. The created real‐time indicators outperform Eurocoin with respect to timeliness. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
This paper examines the information available through leading indicators for modelling and forecasting the UK quarterly index of production. Both linear and non‐linear specifications are examined, with the latter being of the Markov‐switching type as used in many recent business cycle applications. The Markov‐switching models perform relatively poorly in forecasting the 1990s production recession, but a three‐indicator linear specification does well. The leading indicator variables in this latter model include a short‐term interest rate, the stock market dividend yield and the optimism balance from the quarterly CBI survey. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
4.
This paper applies a tightly parameterized pattern recognition algorithm, previously applied to earthquake prediction, to the problem of predicting recessions. Monthly data from 1962 to 1996 on six leading and coincident economic indicators for the USA are used. In the full sample, the model performs better than benchmark linear and non‐linear models with the same number of parameters. Subsample and recursive analysis indicates that the algorithm is stable and produces reasonably accurate forecasts even when estimated using a small number of recessions. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
5.
This paper introduces a new monthly euro Area‐wide Leading Indicator (ALI) for the euro area growth cycle which is composed of nine leading series and derived from a one‐sided bandpass filter. The main findings are that (i) the GDP growth cycle in the euro area can be well tracked, in a timely manner and at monthly frequency, by a reference growth cycle indicator (GCI) derived from industrial production excluding construction, (ii) the ALI reliably leads turning points in the GCI by 5 months and (iii) longer leading components of the ALI are good predictors of the GCI up to 9 months ahead. A real‐time case study on the ALI's capabilities for signalling turning points in the euro area growth cycle from 2007 to 2011 confirms these findings. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
In this paper we present two new composite leading indicators of economic activity in Germany estimated using a dynamic factor model with and without regime switching. The obtained optimal inferences of business cycle turning points indicate that the two‐state regime switching procedure leads to a successful representation of the sample data and provides an appropriate tool for forecasting business conditions. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
7.
We propose a new framework for building composite leading indicators for the Spanish economy using monthly targeted predictors and small‐scale dynamic factor models. Our leading indicator index, based on the low‐frequency components of four monthly economic variables, is able to predict the onset of the Spanish recessions as well as the gross domestic product (GDP) growth cycles and classical industrial production cycles, both historically and in real time. Also, our leading indicator provides substantial aid in forecasting annual and quarterly GDP growth rates. Using only real data available at the beginning of each forecast period, our indicator one‐step‐ahead forecasts shows substantial improvements over other alternatives. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
为解决因未考虑语义关联造成的VSM描述不准确的问题,基于知网本体库计算词语间的语义相似度,采用识别完全子图的方式生成概念词列表,再用概念词替换存在密切语义关联的词语.实验表明,该方法在改进文档特征提取效果的同时也明显降低了向量空间的维度.与不经概念词处理的特征提取方法相比,该方法在分类识别率上有一定提升. 相似文献
9.
We evaluate forecasting models of US business fixed investment spending growth over the recent 1995:1–2004:2 out‐of‐sample period. The forecasting models are based on the conventional Accelerator, Neoclassical, Average Q, and Cash‐Flow models of investment spending, as well as real stock prices and excess stock return predictors. The real stock price model typically generates the most accurate forecasts, and forecast‐encompassing tests indicate that this model contains most of the information useful for forecasting investment spending growth relative to the other models at longer horizons. In a robustness check, we also evaluate the forecasting performance of the models over two alternative out‐of‐sample periods: 1975:1–1984:4 and 1985:1–1994:4. A number of different models produce the most accurate forecasts over these alternative out‐of‐sample periods, indicating that while the real stock price model appears particularly useful for forecasting the recent behavior of investment spending growth, it may not continue to perform well in future periods. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Nenad Njegovan 《Journal of forecasting》2005,24(6):421-432
This paper uses the probit model to examine whether leading indicator information could be used for the purpose of predicting short‐term shifts in demand for business travel by air to and from the UK. Leading indicators considered include measures of business expectations, availability of funds for corporate travel and some well‐known macroeconomic indicators. The model performance is evaluated on in‐ and out‐of‐sample basis, as well as against a linear leading indicator model, which is used to mimic the current forecasting practice in the air transport industry. The estimated probit model is shown to provide timely predictions of the early 1980s and 1990s industry recessions and is shown to be more accurate than the benchmark linear model. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
Volatility spillover from the US to international stock markets: A heterogeneous volatility spillover GARCH model
下载免费PDF全文

A recent study by Rapach, Strauss, and Zhou (Journal of Finance, 2013, 68(4), 1633–1662) shows that US stock returns can provide predictive content for international stock returns. We extend their work from a volatility perspective. We propose a model, namely a heterogeneous volatility spillover–generalized autoregressive conditional heteroskedasticity model, to investigate volatility spillover. The model specification is parsimonious and can be used to analyze the time variation property of the spillover effect. Our in‐sample evidence shows the existence of strong volatility spillover from the US to five major stock markets and indicates that the spillover was stronger during business cycle recessions in the USA. Out‐of‐sample results show that accounting for spillover information from the USA can significantly improve the forecasting accuracy of international stock price volatility. 相似文献
12.
This study proposes Gaussian processes to forecast daily hotel occupancy at a city level. Unlike other studies in the tourism demand prediction literature, the hotel occupancy rate is predicted on a daily basis and 45 days ahead of time using online hotel room price data. A predictive framework is introduced that highlights feature extraction and selection of the independent variables. This approach shows that the dependence on internal hotel occupancy data can be removed by making use of a proxy measure for hotel occupancy rate at a city level. Six forecasting methods are investigated, including linear regression, autoregressive integrated moving average and recent machine learning methods. The results indicate that Gaussian processes offer the best tradeoff between accuracy and interpretation by providing prediction intervals in addition to point forecasts. It is shown how the proposed framework improves managerial decision making in tourism planning. 相似文献
13.
Angelos Kanas 《Journal of forecasting》2003,22(4):299-315
Following recent non‐linear extensions of the present‐value model, this paper examines the out‐of‐sample forecast performance of two parametric and two non‐parametric nonlinear models of stock returns. The parametric models include the standard regime switching and the Markov regime switching, whereas the non‐parametric are the nearest‐neighbour and the artificial neural network models. We focused on the US stock market using annual observations spanning the period 1872–1999. Evaluation of forecasts was based on two criteria, namely forecast accuracy and forecast encompassing. In terms of accuracy, the Markov and the artificial neural network models produce at least as accurate forecasts as the other models. In terms of encompassing, the Markov model outperforms all the others. Overall, both criteria suggest that the Markov regime switching model is the most preferable non‐linear empirical extension of the present‐value model for out‐of‐sample stock return forecasting. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
In order to provide short‐run forecasts of headline and core HICP inflation for France, we assess the forecasting performance of a large set of economic indicators, individually and jointly, as well as using dynamic factor models. We run out‐of‐sample forecasts implementing the Stock and Watson (1999) methodology. We find that, according to usual statistical criteria, the combination of several indicators—in particular those derived from surveys—provides better results than factor models, even after pre‐selection of the variables included in the panel. However, factors included in VAR models exhibit more stable forecasting performance over time. Results for the HICP excluding unprocessed food and energy are very encouraging. Moreover, we show that the aggregation of forecasts on subcomponents exhibits the best performance for projecting total inflation and that it is robust to data snooping. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
Case‐based reasoning (CBR) is a very effective and easily understandable method for solving real‐world problems. Business failure prediction (BFP) is a forecasting tool that helps people make more precise decisions. CBR‐based BFP is a hot topic in today's global financial crisis. Case representation is critical when forecasting business failure with CBR. This research describes a pioneer investigation on hybrid case representation by employing principal component analysis (PCA), a feature extraction method, along with stepwise multivariate discriminant analysis (MDA), a feature selection approach. In this process, sample cases are represented with all available financial ratios, i.e., features. Next, the stepwise MDA is used to select optimal features to produce a reduced‐case representation. Finally, PCA is employed to extract the final information representing the sample cases. All data signified by hybrid case representation are recorded in a case library, and the k‐nearest‐neighbor algorithm is used to make the forecasting. Thus we constructed a hybrid CBR (HCBR) by integrating hybrid case representation into the forecasting tool. We empirically tested the performance of HCBR with data collected for short‐term BFP of Chinese listed companies. Empirical results indicated that HCBR can produce more promising prediction performance than MDA, logistic regression, classical CBR, and support vector machine. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Detecting and Predicting Economic Accelerations,Recessions, and Normal Growth Periods in Real‐Time
下载免费PDF全文

Christian R. Proaño 《Journal of forecasting》2017,36(1):26-42
The dichotomous characterization of the business cycle in recessions and expansions has been central in the literature over the last 50 years. However, there are various reasons to question the adequacy of this dichotomous, recession/expansion approach for our understanding of the business cycle dynamics, as well as for the prediction of future business cycle developments. In this context, the contribution of this paper to the literature is twofold. First, since a positive rate of growth at the level of economic activity can be considered as the normal scenario in modern economies due to both population and technological growth, it proposes a new non‐parametric algorithm for the detection and dating of economic acceleration periods, trend or normal growth periods, and economic recessions. Second, it uses an ordered probit framework for the estimation and forecasting of these three business cycle phases, applying an automatized model selection approach using monthly macroeconomic and financial data on the German economy. The empirical results show that this approach has superior out‐of‐sample properties under real‐time conditions compared to alternative probit models specified individually for the prediction of recessions and/or economic accelerations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
We present and apply singular spectrum analysis (SSA), a relatively new, non‐parametric and data‐driven method for signal extraction (trends, seasonal and business cycle components) and forecasting of UK tourism income. Our results show that SSA slightly outperforms SARIMA and time‐varying‐parameter state space models in terms of root mean square error, mean absolute error and mean absolute percentage error forecasting criteria. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Data revisions and selections of appropriate forwarding‐looking variables have a major impact on true identification of news shocks and quality of research findings derived from structural vector autoregression (SVAR) estimation. This paper revisits news shocks to identify the role of different vintages of total factor productivity (TFP) series and term structure of interest rates as major prognosticators of future economic growth. There is a growing strand of literature regarding the use of utilization‐adjusted TFP series, provided by Fernald (Federal Reserve Bank of San Francisco, Working Paper Series, 2014) for identification of news shocks. We reestimate Barsky and Sims' (Journal of Monetary Economics, 2011, 58, 273–289) empirical analysis by employing 2007 and 2015 vintages of TFP data. We find substantial quantitative as well as qualitative differences among impulse response functions when using 2007 and 2015 vintages of TFP data. Output and hours initially decline, followed by quick reversal of both variables. In sharp contrast to results achieved by the 2007 vintage of TFP data, results achieved by the 2015 vintage of TFP data depict that output and hours will increase in response to positive TFP shock. By including term structure data in our VAR specification, total surprise technology shock and news shock account for 97% and 92% of the forecast error variance in total TFP and total output respectively. We find that revisions in TFP series over time ultimately impact the conclusion regarding news shocks on business cycles. Our results support the notion that term structure data help in better identification of news shock as compared to other forward‐looking variables. 相似文献