首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
渗透汽化性能及结构稳定性是复合膜的重要评价指标。采用纳米划痕技术原位表征分离层与支撑体的界面结合强度。以聚二甲基硅氧烷(PDMS)化合物作为膜材料,详细考察管式多孔陶瓷支撑体粗糙度及孔径对PDMS复合膜界面结合强度及渗透汽化性能的影响。结果表明:陶瓷支撑体粗糙度为1μm,平均孔径为200nm,制备的复合膜结构稳定性及渗透汽化性能最佳,临界载荷为27mN,当进料温度为40℃时,膜对1%丁醇水溶液的通量可达1139g/(m~2·h),分离因子为22。  相似文献   

2.
采用浸渍-提拉法在多孔管式陶瓷支撑体内表面制备完整无缺陷的聚二甲基硅氧烷(PDMS)膜层。采用扫描电子显微镜(SEM)、渗透汽化(PV)性能测试等手段,研究支撑体孔径和涂膜时间对管式PDMS/陶瓷复合内膜的形貌和分离性能的影响。同时,考察丁醇-水体系中料液温度、料液中丁醇含量对管式PDMS/陶瓷复合内膜渗透汽化性能的影响,并对膜的渗透汽化长期稳定性进行了研究,将复合内膜的渗透汽化性能与复合外膜进行了比较。结果表明:复合膜均匀完整,有良好的过渡层。支撑体孔径较大的复合膜,其渗透通量更高。随涂膜时间的延长,膜厚依次增加,渗透通量下降,分离因子升高;随料液中丁醇含量增加,通量逐渐上升,分离因子先升高后下降;随操作温度的升高,通量和分离因子都有所增加。在料液温度为40℃、丁醇质量分数为1.5%的条件下连续运行180h,膜渗透总通量高达1 050 g/(m~2·h),选择性可达30。  相似文献   

3.
渗透汽化法分离水溶液中低质量分数的乙酸乙酯   总被引:1,自引:0,他引:1  
为了降低乙酸乙酯工业生产的能耗,提高产品收率,进行渗透汽化法分离水溶液中低质量分数乙酸乙酯的研究.采用实验室自制的聚二甲基硅氧烷(PDMS)/陶瓷复合膜,考察乙酸乙酯的质量分数和原料液温度对渗透汽化性能的影响.研究发现,当原料液中乙酸乙酯的质量分数为7%、温度为50℃时,膜的渗透通量和分离因子分别达到8.7 kg/(m2·h)和38.1.在分离因子相当的前提下,聚二甲基硅氧影陶瓷复合膜的渗透通量与其他报道的膜材料相比具有明显的优势.  相似文献   

4.
将氧化钇稳定型氧化锆(YSZ)中空纤维载体上制备的CHA分子筛膜用于二甲基甲酰胺(DMF)渗透汽化脱水,系统考察了进料水含量和操作温度对膜分离性能的影响,并研究了CHA分子筛膜渗透汽化的长期稳定性。结果表明:膜的渗透水通量随进料水含量和操作温度的升高而增加;对于质量分数为10.0%水/DMF溶液,当操作温度为75℃时,CHA分子筛膜的初始渗透水通量和分离因子分别为5.7 kg/(m~2·h)和1 180;DMF分子在CHA分子筛膜表面和孔道内的吸附阻碍了水的渗透,膜的渗透水通量逐渐下降并在24 h后稳定在1.0 kg/(m~2·h)左右,渗透侧水质量分数稳定在99.0%以上。  相似文献   

5.
以气相纳米二氧化硅(n-SiO_2)为填充物,制备了均质膜、填充膜、复合膜、填充型复合膜四种分离膜。通过溶胀实验考察填充膜的吸附性能,渗透汽化实验考察填充型复合膜对吡咯/正庚烷二元混合体系的分离性能,采用FT-IR和XRD、SEM对膜进行表征。四种分离膜中,填充型复合膜的分离性能最佳。当填充量为1 wt%时,膜的综合分离性能最佳,料液温度为30℃,料液浓度为5 000μg/g时,总渗透通量为3.47 kg/(m~2·h),分离因子最大为14.56,渗透汽化综合性能得到很大的提高。这项工作可以为渗透汽化分离汽油中氮化物提供有益的参考。  相似文献   

6.
以聚砜(PSF)中空纤维超滤为基膜,二苯甲酰-L-酒石酸(L-DBTA)为模板分子,甲基丙烯酸甲酯(MMA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用表面热聚合方法制备了L-DBTA印迹中空纤维复合膜。该复合膜对异丙醇/水体系具有很好的分离效果,对于w=0.20和0.50的异丙醇/水体系,经过一次浸膜制得的L-DBTA分子印迹复合膜的分离因子分别为2 400和5 690,通量分别为1 440 g/(m2.h)和551 g/(m2.h);对于w=0.95的异丙醇/水体系,浸膜液浓缩一倍,经过两次浸膜制得的L-DBTA分子印迹复合膜分离因子可达82 100,渗透通量可达739 g/(m2.h);对于异丙醇/水体系,通过实验,获得了L-DBTA分子印迹复合膜与一般渗透汽化膜相反的分离规律:料液温度升高,L-DBTA分子印迹复合膜的渗透通量下降;随着料液浓度的升高,分离因子出现最大值时的温度逐渐升高。  相似文献   

7.
采用不同黏度的聚二甲基硅氧烷(PDMS)溶液制备平板聚二甲基硅氧烷/聚偏二氟乙烯(PDMS/PVDF)复合膜,并比较膜对乙醇/水混合物的渗透汽化性能的影响。通过扫描电子显微镜(SEM)、接触角分析仪等表征手段研究聚合物溶液黏度对膜微结构的影响。结果表明:聚合物溶液黏度为90 mPa·s时制备的复合膜分离性能最佳,当进料温度为313 K时,膜对5%乙醇水溶液的通量可达761 g/(m2·h),分离因子为9.1。  相似文献   

8.
采用二次生长法在α-Al_2O_3四通道中空纤维支撑体外表面合成SAPO-34分子筛膜,用于渗透汽化脱水分离。考察操作温度对分子筛膜渗透汽化性能的影响,并研究渗透汽化过程中膜结构性能的稳定性。结果表明:采用球磨晶种诱导合成出了高质量的SAPO-34分子筛膜,75℃下膜在异丙醇(90%)-水(10%)体系中,分离因子达到3 600,渗透通量为3.34 kg/(m~2·h);在乙醇(90%)-水(10%)体系中,膜的分离因子最高为419,渗透通量为1.19kg/(m~2·h)。SAPO-34分子筛膜具有良好的渗透汽化分离稳定性和耐酸性能。  相似文献   

9.
二维纳米材料复合膜是目前膜分离领域的研究热点。通过在具有不规则大孔结构的陶瓷中空纤维基膜上引入TiO2过渡层,有效地降低了基膜的孔径和粗糙度。在复合膜外表面构筑MoS2/PVA(聚乙烯醇)分离层,用于异丙醇脱水,通过原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)等表征了复合膜的微观形貌,考察了分离层厚度、操作温度及料液浓度对复合膜分离性能的影响。在50℃下分离质量分数为90%的异丙醇水溶液时,MoS2/PVA-30复合膜表现出了较优的分离性能,其渗透通量为486 g/(m2·h),分离系数为445。  相似文献   

10.
生物源挥发性有机物对近地面臭氧及二次有机气溶胶的形成过程起着重要作用。为探究内蒙古锡林郭勒草原不同植物排放挥发性有机物排放通量,采用动态箱采样法采集,GC/MS测定其排放通量,同时记录温度、湿度和光合有效辐射参数;在标准状态(30℃,1 000μmol/(m~2·s))下,依据G_(95)模式和G_(93)模式,分别推定了不同植物排放异戊二烯和单萜烯类化合物的排放通量。结果表明:(1)羊草、冰草、狼毒、克氏针茅、达乌里黄芪、芨芨草、冷蒿、木地肤、麻叶荨麻,在标准状态下异戊二烯排放通量和单萜烯类化合物排放通量依次为(204.60±11.86)、(412.90±9.27)、(1 548.10±24.30)、(322.34±1.02)、(590.54±151.22)、(226.40±110.15)、(204.19±98.79)、(529.95±209.88)、(305.62±137.98)μg/(m~2·h)和(1 059.57±874.58)、(199.28±42.16)、(23.67±8.09)、(121.79±79.38)、(402.22±31.80)、(92.53±48.88)、(294.54±112.74)、(62.78±16.24)、(164.07±61.83)μg/(m~2·h);(2)羊草、冰草、冷蒿、麻叶荨麻排放的异戊二烯排放通量由光合有效辐射和温度共同影响;(3)温度对单萜烯类化合物排放通量的影响明显。  相似文献   

11.
以聚醚砜(PES)超滤膜为基底,戊二醛为表面粘合剂,将由4-磺基邻苯二甲酸(SPTA)交联得到的聚乙烯醇(PVA)涂覆到PES表面得到了磺化PVA/PES复合膜。利用傅里叶变换红外光谱仪(FT-IR)、热失重分析仪(TGA)表征不同交联剂含量PVA膜的交联程度以及热稳定性,通过电子扫描显微镜(SEM)对复合膜的形貌进行表征。研究了交联剂含量对PVA/PES复合膜渗透汽化脱盐性能的影响,结果表明:随着交联剂含量的增加,致密膜的溶胀度先减小后增加,而水接触角先增加后减小;当交联度为15%时,复合膜的渗透汽化性能最优;性能最优复合膜的纯水通量在70℃时达到24.32 L/(m~2·h),在处理质量分数为3.5%Na Cl水溶液时的水通量达到13.27 L/(m2·h),对盐的截留率高达99.88%。  相似文献   

12.
以EMT为晶种,通过二次生长法制备出NaY分子筛膜并进行了表征,考察了二次生长液的碱度和铝含量对膜微结构的影响。将制备的膜材料应用于碳酸二甲酯与甲醇混合体系的分离,考察了原料液的浓度以及渗透蒸发温度对分离效果的影响,确定了膜层的稳定性。结果表明:二次生长液中,当n(SiO_2)/n(Na_2O)=1/1.4,n(SiO_2)/n(Al_2O_3)=10时,所得到的膜层质量最好。该膜对MeOH/DMC混合体系的分离效果受原料液的浓度和渗透汽化温度的影响显著。在50℃时,随着原料液质量分数的增加(20%~80%),膜材料的分离因子由34.1值降低至5.2,渗透通量由114.7增加至135.5g/(m~2·h);随着渗透汽化温度的升高(20~80℃),对于组成为甲醇质量分数50%的混合体系,膜材料的分离因子由29.8降低至2.8,渗透通量由96.3增加至180.8g/(m~2·h).膜材料稳定性良好,在14h内分离因子和渗透通量无明显改变。  相似文献   

13.
为了研究新型二维氧化石墨烯膜材料在乙醇脱水过程中的应用,采用改进的Hummers法制备氧化石墨烯,通过傅里叶变换红外光谱仪(FT-IR)、热分析仪(TG-DSC)和场发射扫描电子显微镜(FESEM)等表征氧化石墨烯的微结构及性质。以管式陶瓷超滤膜为支撑体,采用浸渍提拉法制备完整无缺陷的氧化石墨烯膜。结果表明:将所制备的氧化石墨烯陶瓷复合膜用于乙醇脱水过程,此膜对水分子表现出优先选择透过性。当原料液中水质量分数为10%,操作温度为60℃时,乙醇-水的分离因子可以达到36以上,渗透通量达到2.5 kg/(m2·h)。氧化石墨烯陶瓷复合膜可以操作100 h以上,并保持一定的分离性能,具有较好的稳定性。  相似文献   

14.
研究了经化学改性后的聚乙烯醇-聚丙烯晴复合膜的渗透蒸发性质,制成了活性层厚度小于3μm,强度好,在热水中稳定的复合膜。其主要性能同德国GFT公司生产的膜相当:当渗透温度为75℃,乙醇浓度为95%时,渗透液通量为170 g/(h·m~3),渗透液中水的含量大于99%,分离系数为1880。改变处理条件,膜的选择性略有下降,但渗透液通量可  相似文献   

15.
以聚丙烯腈(PAN)中空纤维超滤膜为底膜,以酒石酸(Tac)为交联剂,制备了聚乙烯醇(PVA)与全氟磺酸(PFSA)共混复合膜,并用于乙酸乙酯-水、乙酸乙酯-乙醇-水溶液的脱水研究。考察了分离乙酸乙酯-水二元溶液时,料液温度和含水量对复合膜分离性能的影响;40℃下分离含水2%(质量分数,下同)的乙酸乙酯水溶液时,其总渗透通量81.1 g/(m2.h),分离因子为1 890;考察了复合膜用于分离乙酸乙酯-乙醇-水(质量比90∶2∶8)三元溶液时,料液温度的影响及脱水效果。结果表明:40℃时复合膜对三元溶液的总渗透通量可达251.0 g/(m2.h),此温度下,只需12 h就可将含8%初始水的三元溶液脱水至4.66%。PVA-PFSA/PAN渗透汽化膜对乙酸乙酯体系的脱水效果良好,可应用于强化乙酸乙酯酯化生产工艺。利用Aspen Plus 11.1软件对工艺流程进行了模拟,结果表明:在同等操作条件下,渗透汽化膜强化酯化工艺流程相对于普通的反应精馏,提高了乙酸乙酯的单程收率和原料的转化率,简化了乙酸乙酯生产流程。  相似文献   

16.
利用热交联反应,在72℃下将丙烯酸酯单体和羟乙基纤维素聚合物合成交联羟乙基纤维素膜,用红外光谱仪表征交联羟乙基纤维素膜的膜结构.采用模拟汽油和催化裂化汽油评价了丙氧基化-甘油三丙烯酸酯交联羟乙基纤维素膜的分离性能.结果表明:1,6-己二醇双丙烯酸酯、丙氧基化-甘油三丙烯酸酯和三羟甲基丙烷三甲基丙烯酸酯3种单体和羟乙基纤维素反应后,生成的特征峰(3749 cm-1)相同,但是交联度和对噻吩的相互作用参数不同,对噻吩的富集能力亦不同;交联剂含量增加,红外谱图中特征峰值增加,交联度增加,对噻吩的选择性增加而渗透性降低;进料为1.20×10-3的模拟汽油时,该膜对噻吩的富集因子达到26,通量为0.13 kg/(m2·h),进料为催化裂化汽油时,富集因子3.6,通量3.0 kg/(m2·h).  相似文献   

17.
考察了PEBA2533渗透汽化膜分离稀水溶液中邻甲酚的性能,并运用渗透汽化-分级冷凝工艺回收高纯度邻甲酚晶体。采用扫描电子显微镜对PEBA2533膜的表面及断面进行表征,通过膜的溶胀实验考察了PEBA2533膜对邻甲酚的吸附性能,考察了在不同原料质量浓度及原料液温度时PEBA2533膜对邻甲酚的分离性能。结果表明:随着原料液浓度增大,邻甲酚的通量不断增大;在原料液质量浓度范围2 000~7 000mg/L内,分离因子处于较高的范围(59~105).随着原料液温度升高,邻甲酚与水的通量均明显增大,同时分离因子也逐渐增大;当原料液质量浓度与温度为7 000mg/L,70℃时,邻甲酚晶体通量高达295.9g/(m~2·h),纯度为99.9%.  相似文献   

18.
利用热浸渍法和打磨法引入晶种合成NaA分子筛膜,将合成的NaA分子筛膜应用于乙醇/水混合体系,研究进料温度、进料侧压力及进料流量等对其分离性能的影响。结果表明,进料温度升高,渗透通量和分离因数呈增大趋势;进料侧压力增大,渗透通量增加,分离因数减小;进料流量增大,渗透通量明显增大,分离因数未发生明显变化。进料温度为75℃、进料侧压力为100kPa、相对真空度接近-0.1MPa、进料流量为16L/h时,所得NaA分子筛膜的渗透通量和分离因数分别为1.08kg.m-2.h-1和3 338,此时用于乙醇/水混合体系分离效果最佳。NaA分子筛膜的重复性高达80%。  相似文献   

19.
壳聚糖复合膜渗透化法分离乙醇/水混合物   总被引:4,自引:1,他引:3  
将壳聚糖 (CS)和聚乙烯醇 (PVA)混合物涂到聚丙烯腈 (PAN)中空纤维内表面 ,通过适当的交联制成壳聚糖复合膜。研究了乙醇水液体混合物在膜中的渗透汽化性能 ,讨论了料液浓度、温度对膜分离性能的影响。结果表明 ,CS PVA/PAV膜具有优异的渗透选择性能 ,当料液乙醇含量为 95wt%时 ,6 0℃和 70℃渗透通量为 310g/(m2 ·h)和 433g/(m2 ·h) ;分离因子为 116和 12 7,渗透通量与温度呈Arrhenius关系  相似文献   

20.
制备了壳聚糖-海藻酸钠/聚丙烯腈(CS-SA/PAN)聚离子复合膜,将此膜用于渗透汽化分离乙酸乙酯水溶液.用红外光谱(FT-IR)表征CS、SA、CS/SA均质膜.研究CS-SA/PAN聚离子复合膜的溶胀性、料液浓度和SA质量分数、操作温度对乙酸乙酯水溶液脱水效果的影响.实验表明:CS/SA聚离子均质膜在乙酸乙酯水溶液中的溶胀度随溶液中水质量分数的增加而增大,随SA的质量分数增加而减小,40 ℃、SA质量分数为2.0%时,CS/SA聚离子均质膜在乙酸乙酯质量分数为97%的水溶液中溶胀度可达51%.随着SA质量分数的增加,CS-SA/PAN聚离子复合膜的渗透通量减小,分离因子增大,40 ℃、SA质量分数为2.0%时,分离乙酸乙酯质量分数为97%的水溶液,CS-SA/PAN聚离子复合膜渗透通量可达348 g/(m2·h),分离因子为7 245.随着料液中水含量的增加和料液温度的升高,膜渗透通量增大,分离系数减小,渗透通量与料液温度的关系能较好地吻合Arrhenius方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号