首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals   总被引:16,自引:0,他引:16  
Cowan CA  Henkemeyer M 《Nature》2001,413(6852):174-179
Bidirectional signals mediated by membrane-anchored ephrins and Eph receptor tyrosine kinases have important functions in cell-cell recognition events, including those that occur during axon pathfinding and hindbrain segmentation. The reverse signal that is transduced into B-ephrin-expressing cells is thought to involve tyrosine phosphorylation of the signal's short, conserved carboxy-terminal cytoplasmic domain. The Src-homology-2 (SH2) domain proteins that associate with activated tyrosine-phosphorylated B-subclass ephrins have not been identified, nor has a defined cellular response to reverse signals been described. Here we show that the SH2/SH3 domain adaptor protein Grb4 binds to the cytoplasmic domain of B ephrins in a phosphotyrosine-dependent manner. In response to B-ephrin reverse signalling, cells increase FAK catalytic activity, redistribute paxillin, lose focal adhesions, round up, and disassemble F-actin-containing stress fibres. These cellular responses can be blocked in a dominant-negative fashion by expression of the isolated Grb4 SH2 domain. The Grb4 SH3 domains bind a unique set of other proteins that are implicated in cytoskeletal regulation, including the Cbl-associated protein (CAP/ponsin), the Abl-interacting protein-1 (Abi-1), dynamin, PAK1, hnRNPK and axin. These data provide a biochemical pathway whereby cytoskeletal regulators are recruited to Eph-ephrin bidirectional signalling complexes.  相似文献   

2.
3BP2最初被作为一个Abl SH3结合蛋白被分离,但是其功能并不确定。除了富含脯氨酸区域和间接与SH3结合外,3BP2还有一个PH和Src同源区2结构域(SH2)。 Src同源区2结构域(SH2)是一个很大的家族,它们通过人体基因组编码的模块间的相互作用来识别酪氨酸磷酸化序列,由此在细胞信号转导和控制中发挥中心作用。肽基可以被SH2识别从而形成一种复合物.这篇文章的内容是关于3BP2的SH2结构域的晶体结构和与来源于FRS2的肽的复合物的晶体结构。依照表面电荷性质,这个结合袋的特异性是半极性半中性的。这个结构的特点明显的表现在,对于亲和性来说,Glu(p+1)比Ala (p+1) 或 Val (p+1)更为重要。  相似文献   

3.
Meng W  Sawasdikosol S  Burakoff SJ  Eck MJ 《Nature》1999,398(6722):84-90
Cbl is an adaptor protein that functions as a negative regulator of many signalling pathways that start from receptors at the cell surface. The evolutionarily conserved amino-terminal region of Cbl (Cbl-N) binds to phosphorylated tyrosine residues and has cell-transforming activity. Point mutations in Cbl that disrupt its recognition of phosphotyrosine also interfere with its negative regulatory function and, in the case of v-cbl, with its oncogenic potential. In T cells, Cbl-N binds to the tyrosine-phosphorylated inhibitory site of the protein tyrosine kinase ZAP-70. Here we describe the crystal structure of Cbl-N, both alone and in complex with a phosphopeptide that represents its binding site in ZAP-70. The structures show that Cbl-N is composed of three interacting domains: a four-helix bundle (4H), an EF-hand calcium-binding domain, and a divergent SH2 domain that was not recognizable from the amino-acid sequence of the protein. The calcium-bound EF hand wedges between the 4H and SH2 domains and roughly determines their relative orientation. In the ligand-occupied structure, the 4H domain packs against the SH2 domain and completes its phosphotyrosine-recognition pocket. Disruption of this binding to ZAP-70 as a result of structure-based mutations in the 4H, EF-hand and SH2 domains confirms that the three domains together form an integrated phosphoprotein-recognition module.  相似文献   

4.
Chen YH  Li MH  Zhang Y  He LL  Yamada Y  Fitzmaurice A  Shen Y  Zhang H  Tong L  Yang J 《Nature》2004,429(6992):675-680
High-voltage-activated Ca2+ channels are essential for diverse biological processes. They are composed of four or five subunits, including alpha1, alpha2-delta, beta and gamma (ref. 1). Their expression and function are critically dependent on the beta-subunit, which transports alpha1 to the surface membrane and regulates diverse channel properties. It is believed that the beta-subunit interacts with alpha1 primarily through the beta-interaction domain (BID), which binds directly to the alpha-interaction domain (AID) of alpha1; however, the molecular mechanism of the alpha1-beta interaction is largely unclear. Here we report the crystal structures of the conserved core region of beta3, alone and in complex with AID, and of beta4 alone. The structures show that the beta-subunit core contains two interacting domains: a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain. The AID binds to a hydrophobic groove in the GK domain through extensive interactions, conferring extremely high affinity between alpha1 and beta-subunits. The BID is essential both for the structural integrity of and for bridging the SH3 and GK domains, but it does not participate directly in binding alpha1. The presence of multiple protein-interacting modules in the beta-subunit opens a new dimension to its function as a multi-functional protein.  相似文献   

5.
D G Drubin  J Mulholland  Z M Zhu  D Botstein 《Nature》1990,343(6255):288-290
In yeast, the cortical actin cytoskeleton seems to specify sites of growth of the cell surface. Because the actin-binding protein ABP1p is associated with the cortical cytoskeleton of Saccharomyces cerevisiae, it might be involved in the spatial organization of cell surface growth. ABP1p is localized to the cortical cytoskeleton and its overproduction causes assembly of the cortical actin cytoskeleton at inappropriate sites on the cell surface, resulting in delocalized surface growth. We have now cloned and sequenced the gene encoding ABP1p. ABP1p is a novel protein with a 50 amino-acid C-terminal domain that is very similar to the SH3 domain in the non-catalytic region of nonreceptor tyrosine kinases (including those encoded by the proto-oncogenes c-src and c-abl), in phospholipase C gamma and in alpha-spectrin. We also identified an SH3-related motif in the actin-binding tail domain of myosin-I. The identification of SH3 domains in a family of otherwise unrelated proteins that associate with the membrane cytoskeleton indicates that this domain might serve to bring together signal transduction proteins and their targets or regulators, or both, in the membrane cytoskeleton.  相似文献   

6.
7.
 基于共进化理论,探究了甲型流感病毒PB1蛋白与PA蛋白上具有共同进化可能性的保守九聚片段 (C9MP)。结构信息显示PB1蛋白的第1-15位氨基酸与PA蛋白的第239-716位氨基酸具有相互作用域;对该区域变异分布的分析发现,PA蛋白第670位氨基酸Q所在的C9MP与PB1蛋白的第9位氨基酸F、第12位氨基酸V和第13位氨基酸P所在的C9MP在PB1-MP1相互作用面上具有最低的共进化值。结合DSSP程序的分析表明,由PA蛋白第670位氨基酸Q与PB1蛋白的第9位氨基酸F、第12位氨基酸V与第13位氨基酸P构成的区域可能成为潜在的相互作用位点。  相似文献   

8.
9.
S G Clark  M J Stern  H R Horvitz 《Nature》1992,356(6367):340-344
The induction of the hermaphrodite vulva and the migration of the sex myoblasts in the nematode Caenorhabditis elegans are both controlled by intercellular signalling. The gonadal anchor cell induces formation of the vulva from nearby hypodermal cells, and a set of somatic gonadal cells attract the migrating sex myoblasts to their final positions. Many genes required for vulval induction have been identified, including the let-23 receptor tyrosine kinase gene and the let-60 ras gene. We report here the identification and characterization of a new gene, sem-5 (sem, sex muscle abnormal), that acts both in vulval induction and in sex myoblast migration. On the basis of its DNA sequence, sem-5 encodes a novel 228-amino-acid protein which consists almost entirely of one SH2 (SH, src homology region) and two SH3 domains. SH2 and SH3 domains are present in many signalling proteins regulated by receptor and non-receptor tyrosine kinases. Mutations that impair sem-5 activity alter residues that are highly conserved among different SH2 and SH3 domains. Our results indicate that the sem-5 gene encodes a novel protein that functions in at least two distinct cell-signalling processes.  相似文献   

10.
Structure and conserved RNA binding of the PAZ domain   总被引:1,自引:0,他引:1  
Yan KS  Yan S  Farooq A  Han A  Zeng L  Zhou MM 《Nature》2003,426(6965):468-474
The discovery of RNA-mediated gene-silencing pathways, including RNA interference, highlights a fundamental role of short RNAs in eukaryotic gene regulation and antiviral defence. Members of the Dicer and Argonaute protein families are essential components of these RNA-silencing pathways. Notably, these two families possess an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose biochemical function is unknown. Here we report the nuclear magnetic resonance solution structure of the PAZ domain from Drosophila melanogaster Argonaute 1 (Ago1). The structure consists of a left-handed, six-stranded beta-barrel capped at one end by two alpha-helices and wrapped on one side by a distinctive appendage, which comprises a long beta-hairpin and a short alpha-helix. Using structural and biochemical analyses, we demonstrate that the PAZ domain binds a 5-nucleotide RNA with 1:1 stoichiometry. We map the RNA-binding surface to the open face of the beta-barrel, which contains amino acids conserved within the PAZ domain family, and we define the 5'-to-3' orientation of single-stranded RNA bound within that site. Furthermore, we show that PAZ domains from different human Argonaute proteins also bind RNA, establishing a conserved function for this domain.  相似文献   

11.
12.
E Schwob  R P Martin 《Nature》1992,355(6356):179-182
Actin, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface. We report here the characterization of ACT2, a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from S. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.  相似文献   

13.
Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain   总被引:3,自引:0,他引:3  
Lingel A  Simon B  Izaurralde E  Sattler M 《Nature》2003,426(6965):465-469
RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central beta-barrel and a conserved module comprising strands beta3, beta4 and helix alpha3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.  相似文献   

14.
15.
Thrombopioetin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Yeast two-hybrid screening was performed to isolate the proteins interacting with the cytoplasmic domain of c-Mpl. 48 positive clones were isolated from 5 × 106 independent transformants. The results of sequence analysis demonstrate that they represent 13 different protein encoding sequences. Among them there are a partial coding sequence of serine/threonine protein kinase SGK (serum and glucocorticoid-inducible kinase) and 14-3-3 theta protein partial coding sequence. GST-pull-down assay and co-immunoprecipitation in mammal cells have confirmed the interaction between these two proteins and c-Mpl. By constructing a series of deleted c-Mpl cytoplasmic domain, the interaction region in c-Mpl cytoplasmic tail was localized in amino acids 523–554. At the same time, the directed interaction between SGK and 14-3-3 proteins also has been verified by yeast two-hybrid assay. The present note is the first time to report that two proteins act with c-Mpl at the same time and put forward that SGK and 14-3-3 protein may be involved in the serine/threonine phosphorylation mechanism for signal transduction.  相似文献   

16.
EGFR信号转导机制及靶向治疗   总被引:1,自引:0,他引:1  
综述了EGFR基本结构特征及其介导细胞信号转导的机制,论述了基于EGFR靶向治疗的机理及研究现状。指出,EGFR是最早被发现并研究的RTK家族成员,其蛋白结构分成胞外域、跨膜区与胞内域三部分。EGFR介导细胞信号转导的核心机制是配体EGF与EGFR胞外域结合,通过变构作用与二聚化作用,使胞内域通过反式激活完成对受体末端酪氨酸残基的磷酸化,进而招募下游信号因子完成细胞信号转导过程。质膜结构与组成、EGFR跨膜区的组成及胞外域的有无、EGFR的内吞及泛素依赖性降解过程都调控EGFR细胞信号转导过程。阻断EGFR信号通路可抑制表皮肿瘤细胞成长。EGFR已经成为表皮肿瘤治疗的重要靶点。  相似文献   

17.
Darios F  Davletov B 《Nature》2006,440(7085):813-817
Growth of neurite processes from the cell body is the critical step in neuronal development and involves a large increase in cell membrane surface area. Arachidonic-acid-releasing phospholipases are highly enriched in nerve growth cones and have previously been implicated in neurite outgrowth. Cell membrane expansion is achieved through the fusion of transport organelles with the plasma membrane; however, the identity of the molecular target of arachidonic acid has remained elusive. Here we show that syntaxin 3 (STX3), a plasma membrane protein, has an important role in the growth of neurites, and also serves as a direct target for omega-6 arachidonic acid. By using syntaxin 3 in a screening assay, we determined that the dietary omega-3 linolenic and docosahexaenoic acids can efficiently substitute for arachidonic acid in activating syntaxin 3. Our findings provide a molecular basis for the previously established action of omega-3 and omega-6 polyunsaturated fatty acids in membrane expansion at the growth cones, and represent the first identification of a single effector molecule for these essential nutrients.  相似文献   

18.
Zarrinpar A  Park SH  Lim WA 《Nature》2003,426(6967):676-680
Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains. This raises the potential problem of cross-reaction. It is generally thought that isolated domain-ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity--no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.  相似文献   

19.
Structural basis for vinculin activation at sites of cell adhesion   总被引:1,自引:0,他引:1  
Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration. In the cytosol, vinculin adopts a default autoinhibited conformation. On recruitment to cell-cell and cell-matrix adherens-type junctions, vinculin becomes activated and mediates various protein-protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.  相似文献   

20.
B Seed 《Nature》1987,329(6142):840-842
Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号