首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了电驱动车辆制动控制中能量回馈与制动稳定性之间的矛盾,提出了一种兼顾制动回馈控制及车轮防抱死控制的基于滑移率试探的电动汽车制动控制策略.在制动过程中根据滑移率是否在稳定区域,实时控制电机制动力与液压制动力,在保证制动稳定性的同时提高制动能量回收能力.该控制策略不依赖于路面辨识、制动力估计等复杂算法.在不同制动工况下的仿真结果表明: 采用该策略能获得接近最优的制动回馈效率,并在大制动力工况中实现了车轮的防抱死控制.  相似文献   

2.
为提高电动汽车再生制动能量回收效果,提出一种基于制动强度控制的制动能量回收最优控制策略.在理想再生制动控制策略基础上,采用理论分析与仿真分析相结合的方法,利用汽车纵向动力学理论、MATLAB/Simulink和CarSim搭建联合仿真模型,研究制动能量回收与制动强度之间的关系,得到不同制动初始速度下实现能量回收最大化的最优制动强度.利用最小二乘法拟合最优制动强度变化规律,得到多项式拟合方程,制定包含制动力分配和最优制动强度控制的再生制动能量回收最优控制策略,并与理想再生制动控制策略进行仿真比较.结果表明:制动强度对制动能量回收效果影响较大,所设计的最优控制策略可以实现制动单次工况能量回收率最优.  相似文献   

3.
电动汽车再生制动能量回收系统可以提高其续航里程。以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合电动汽车的再生制动力分配控制策略。基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

4.
为解决电动汽车制动能量回收少的问题,提出了一个基于模糊逻辑的再生制动能量回收策略.可在考虑系统制动特性的基础上合理分配前后轮的制动力,分配摩擦制动和再生制动力,使制动能量回收最大化.基于该策略在Matlab/Simulink环境下建立了模糊控制模型,并嵌入仿真软件ADVISOR进行仿真.实验结果表明,该控制策略相对于ADVISOR本身的回收策略,制动能量回收效率提高30%以上,有效解决了制动能量回收少问题.  相似文献   

5.
针对吉林大学自主开发的基于传统ESC液压调节单元的单轴解耦式制动能量回收系统,开发了固定分配系数的串联控制策略,进行电机制动力和液压制动力的协调控制.将制动能量回收控制算法集成在制动控制器中,编写控制策略并进行实车试验.试验结果表明,以60 km/h的初速度分别进行协调制动、叠加80 N·m电机力矩制动和叠加50 N·m电机力矩制动,能量回收率分别达24.84%、17.38%和10.28%,并且协调制动过程中车辆加速度与制动踏板保持稳定,驾驶员没有制动变"软"的感觉,说明所提出的控制策略能够提高制动能量回收率,并且保证制动踏板感觉.  相似文献   

6.
电动汽车再生制动能量回收系统可以提高其续航里程。本文以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合本文电动汽车的再生制动力分配控制策略;基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

7.
针对混合动力汽车制动过程中机械制动力与电再生制动力的分配问题,在制动稳定区间内,以尽可能多地回收制动能量为目标,提出了一种最大化制动能量回收的并联式混合动力汽车再生制动控制策略。建立整车与制动控制器模型,仿真结果表明:与传统固定制动力分配比例的控制策略相比,本文所设计的并联式混合动力汽车的制动能量回收率提高了22.8%,燃油经济性提高了4.7%,CO排放量降低了4.4%。  相似文献   

8.
设计出一种新型的制动能量回馈系统及相应的控制策略,从而显著提高混合动力轿车的续驶里程并保证车辆的制动安全.以某型混合动力轿车为研究对象,基于ADVISOR软件建立制动能量回馈系统的仿真模型,设计出一种新型的集成防抱死系统的制动能量回馈系统,并在不同控制策略下对该制动能量回收系统进行典型城市工况循环的仿真分析.结果表明,所设计的制动能量回馈系统安全可靠,回馈制动力与摩擦制动力能够很好地调节,最大限度地发挥能量回馈能力;能量回馈效果显著,在UDCC循环工况下,比ADVISOR原生制动控制策略燃油经济性提高了约15%.  相似文献   

9.
针对电动汽车混合制动系统,通过对整车制动动力学和ECE R13法规的分析,理论上确定了混合制动系统的安全制动区域.在此区域内,以充分回收车辆制动能量为目标,在满足ECE R13制动法规和整车制动稳定性的前提下,对于前后轴机械制动力分配固定的混合制动系统,提出了一种电动机制动力与摩擦制动力分配的优化方法.以工作模式切换点的坐标及制动力分配曲线的斜率为优化对象进行优化.此外,基于制动力分配影响因素多变的特点,设计了一种3参数输入的制动力分配模糊控制策略.分别建立新的制动控制策略模型嵌入到ADVISOR2002中进行仿真分析,从而验证改进控制策略的有效性.结果表明2种新的控制策略能够有效改善电动汽车的制动能量回收率.  相似文献   

10.
为进一步提高电动汽车的能量利用效率以改善其续驶里程,提出一种基于制动稳定性要求的电动汽车最优化能量回收制动力分配策略。通过对制动稳定性要求和ECE R13制动法规的分析,从理论上确定了纯电动汽车安全制动力的分配范围。考虑电机及蓄电池对能量回收的制约,在确定的安全制动范围内,分析了以最大限度回收制动能量为目标的制动力分配流程。将开发的制动控制策略嵌入ADVISOR 2002中,分别在城市道路工况和高速路工况下进行仿真。仿真结果表明:对比ADVISOR中缺省的制动力分配策略,提出的制动力分配策略在保证制动稳定性的要求下,回收能量和能量利用效率都有提高,城市道路工况能量回收提高幅度达163.4%。  相似文献   

11.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

12.
为了充分回收电动汽车制动过程中的制动能量,达到延长续驶里程和节约能源的目的,针对后驱纯电动客车进行了最佳制动能量回收控制策略的研究。在分析制动能量回收系统结构的基础上,考虑驱动电机和动力电池对电机制动力大小的限制,提出了一种最佳制动能量回收控制策略,该策略在保证制动安全的前提下,能回收尽可能多的制动能量。并基于Cruise和Simulink联合仿真平台,搭建了整车仿真模型,进行了仿真验证,仿真结果表明在中国典型城市循环工况中采用该制动能量回收控制策略,所回收的制动能量占制动过程中消耗的动能的比例可达24.7%,占制动系统所消耗的总能量的比例可达36.2%,节能效果明显。  相似文献   

13.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

14.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

15.
为了保证制动安全性,需要将再生制动与原车的ABS系统进行协调控制。基于半挂汽车列车按固定比值分配制动力的制动器结构,提出了适用于三轴车辆的最优能量回收控制策略。根据制动强度、蓄能状态与路面附着条件,分配三轴间机械摩擦与再生制动力,调节摩擦制动力以控制车轮滑移率。利用AMESim和MATLAB/Simulink建立了联合仿真模型。结果表明,协调控制策略可以使制动能量回收率在中低附着路面、中度制动工况下达到13.48%,同时三轴制动时的滑移率均维持在最佳范围内。  相似文献   

16.
李刚  杨志 《科学技术与工程》2020,20(4):1663-1668
伴随汽车的电子化与智能化发展,针对四轮独驱电动汽车驱/制动力独立可控的优势,提出了一种考虑驾驶员制动特性的四轮独驱电动汽车复合制动控制策略。通过应用车辆动力学仿真软件CarSim与MATLAB/Simulink软件建立车体模型、电机模型、电池模型和能量回收控制模型,并合理分配前后轴制动力矩和液压制动与电机制动的比例,通过两种不同循环实验工况对能量回收控制方法进行仿真实验验证。实验结果表明:所提出的复合制动控制策略可以有效分配汽车前后轴制动力矩,保证汽车制动稳定性,并获得较高的能量回收率,提高汽车行驶里程。  相似文献   

17.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

18.
针对前轮驱动的电动汽车提出了一种基于模糊逻辑的制动力分配及能量回收控制策略。同时考虑了制动踏板行程、车速(电机转速)、电池荷电状态等对电动汽车制动力分配的影响,使动力分配更加合理,从而有效地回收制动能量,提高能量利用率。仿真结果表明了该控制策略的有效性和优越性。  相似文献   

19.
为了进一步提高混合动力汽车电液复合制动系统协调性能和制动能量回收率,以一款新型双电机插电式混合动力汽车(PHEV)为研究对象,针对电机制动系统和液压制动系统工作特性的不同,提出符合其电液复合制动系统耦合工作特性的制动能量分配与控制策略。在保证制动安全性的前提下,以最大程度利用电机再生制动力为目标,建立电机损耗模型及可动态控制压力的液压制动系统模型,模拟实际电液复合制动系统的工作特性,通过控制电机制动系统电流实现损耗最小,并且调节速比实现电机与无级变速器(CVT)联合工作效率最优。利用比例-积分-微分(PID)控制调节液压制动系统高速开关阀,实现轮缸压力动态协调控制。制定基于阈值实时优化的制动力分配策略及基于制动强度修正的协调控制策略,利用MATLAB/Simulink和AMESim仿真平台对电机、液压制动系统及传动系统建立整车动力学模型,通过对连续制动及制动突变等制动工况进行联合仿真试验验证该控制策略的性能。研究结果表明:该控制策略可充分发挥双电机制动回收系统的优点,大幅提高制动能量回收率,有效兼顾汽车的制动安全性和平顺性,减小制动力波动;初速度为60 km/h,制动强度由0.6突变至0.3时,最大冲击度由93.36下降为17.52 m/s~3,满足汽车平顺性的要求;在城市车辆排放测试(UDDS)循环工况下,实际能量回收功率最高可增加0.32 kW。  相似文献   

20.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号