首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agathon A  Thisse C  Thisse B 《Nature》2003,424(6947):448-452
Based on grafting experiments, Mangold and Spemann showed the dorsal blastopore lip of an amphibian gastrula to be able to induce a secondary body axis. The equivalent of this organizer region has been identified in different vertebrates including teleosts. However, whereas the graft can induce ectopic head and trunk, endogenous and ectopic axes fuse in the posterior part of the body, raising the question of whether a distinct organizer region is necessary for tail development. Here we reveal, by isochronic and heterochronic transplantation, the existence of a tail organizer deriving from the ventral margin of the zebrafish embryo, which is independent of the dorsal Spemann organizer. Loss-of-function experiments reveal that bone morphogenetic protein (BMP), Nodal and Wnt8 signalling pathways are required for tail development. Moreover, stimulation of naive cells by a combination of BMP, Nodal and Wnt8 mimics the tail-organizing activity of the ventral margin and induces surrounding tissues to become tail. In contrast to induction of the vertebrate head, known to result from the triple inhibition of BMP, Nodal and Wnt, here we show that induction of the tail results from the triple stimulation of BMP, Nodal and Wnt8 signalling pathways.  相似文献   

2.
3.
Thisse B  Wright CV  Thisse C 《Nature》2000,403(6768):425-428
Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.  相似文献   

4.
Hsiung F  Ramirez-Weber FA  Iwaki DD  Kornberg TB 《Nature》2005,437(7058):560-563
The anterior/posterior (A/P) and dorsal/ventral (D/V) compartment borders that subdivide the wing imaginal discs of Drosophila third instar larvae are each associated with a developmental organizer. Decapentaplegic (Dpp), a member of the transforming growth factor-beta (TGF-beta) superfamily, embodies the activity of the A/P organizer. It is produced at the A/P organizer and distributes in a gradient of decreasing concentration to regulate target genes, functioning non-autonomously to regulate growth and patterning of both the anterior and posterior compartments. Wingless (Wg) is produced at the D/V organizer and embodies its activity. The mechanisms that distribute Dpp and Wg are not known, but proposed mechanisms include extracellular diffusion, successive transfers between neighbouring cells, vesicle-mediated movement, and direct transfer via cytonemes. Cytonemes are actin-based filopodial extensions that have been found to orient towards the A/P organizer from outlying cells. Here we show that in the wing disc, cytonemes orient towards both the A/P and D/V organizers, and that their presence and orientation correlates with Dpp signalling. We also show that the Dpp receptor, Thickveins (Tkv), is present in punctae that move along cytonemes. These observations are consistent with a role for cytonemes in signal transduction.  相似文献   

5.
The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.  相似文献   

6.
7.
Niederländer C  Walsh JJ  Episkopou V  Jones CM 《Nature》2001,410(6830):830-834
Nodal-related members of the transforming growth factor (TGF)-beta family regulate the induction of mesoderm, endoderm, and mesendoderm, a tissue specific to the Spemann organizer. How these different tissues form in response to the same signalling molecules is not completely understood. It has been suggested that concentration-dependent effects, mediated by extracellular cofactors and antagonists, are responsible for the differences. Here we show that the nuclear protein Arkadia specifically potentiates the mesendoderm-inducing activity of a subset of TGF-beta family members. The combined activities of Arkadia and Xenopus nodal-related-1 are sufficient to induce mesendoderm and suppress mesoderm. Arkadia dorsalizes ventral tissues, resulting in the induction of organizer-specific gene expression. Blocking nodal signalling extracellularly inhibits these effects. Arkadia influences nodal activity when co-expressed and can function in cells adjacent to those producing the nodal signal. Our findings, together with the observation that Arkadia mutant mice lack a node and node-derived mesendoderm, identify Arkadia as an essential modulator of the nodal signalling cascade that leads to induction of Spemann's organizer.  相似文献   

8.
Silencing of TGF-beta signalling by the pseudoreceptor BAMBI.   总被引:15,自引:0,他引:15  
Members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation. These growth factors transduce their signals through pairs of transmembrane type I and type II receptor kinases. Here, we have cloned a transmembrane protein, BAMBI, which is related to TGF-beta-family type I receptors but lacks an intracellular kinase domain. We show that BAMBI is co-expressed with the ventralizing morphogen BMP4 (refs 5, 6) during Xenopus embryogenesis and that it requires BMP signalling for its expression. The protein stably associates with TGF-beta-family receptors and inhibits BMP and activin as well as TGF-beta signalling. Finally, we provide evidence that BAMBI's inhibitory effects are mediated by its intracellular domain, which resembles the homodimerization interface of a type I receptor and prevents the formation of receptor complexes. The results indicate that BAMBI negatively regulates TGF-beta-family signalling by a regulatory mechanism involving the interaction of signalling receptors with a pseudoreceptor.  相似文献   

9.
10.
Nodal signalling in vertebrate development   总被引:9,自引:0,他引:9  
Schier AF  Shen MM 《Nature》2000,403(6768):385-389
Communication between cells during early embryogenesis establishes the basic organization of the vertebrate body plan. Recent work suggests that a signalling pathway centering on Nodal, a transforming growth factor beta-related signal, is responsible for many of the events that configure the vertebrate embryo. The activity of Nodal signals is regulated extracellularly by EGF-CFC cofactors and antagonists of the Lefty and Cerberus families of proteins, allowing precise control of mesoderm and endoderm formation, the positioning of the anterior-posterior axis, neural patterning and left-right axis specification.  相似文献   

11.
Bennett JT  Stickney HL  Choi WY  Ciruna B  Talbot WS  Schier AF 《Nature》2007,450(7167):E1-2; discussion E2-4
In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.  相似文献   

12.
13.
Protein kinase C mediates neural induction in Xenopus laevis   总被引:10,自引:0,他引:10  
A P Otte  C H Koster  G T Snoek  A J Durston 《Nature》1988,334(6183):618-620
Inductive cell interactions are essential in early embryonic development, but virtually nothing is known about the molecular mechanisms involved. Recently factors resembling fibroblast growth factor and transforming growth factor-beta were shown to be involved in mesoderm induction in Xenopus laevis, suggesting that membrane receptor-mediated signal transduction is important in induction processes. Here we report direct measurements of protein kinase C (PKC) activity in uninduced ectoderm, and in neuroectoderm shortly after induction by the involuting mesoderm, in Xenopus laevis embryos. Membrane-bound PKC activity increased three to fourfold in the induced neuroectoderm while the cytosolic PKC activity was decreasing, indicating that PKC activity was translocated during neural induction. A similar time- and dose-dependent translocation of activity was seen after incubation with the PKC activator 12-O-tetradecanoyl phorbol-13-acetate, which also induced neural tissue in competent ectoderm, suggesting that PKC is involved in the response to the endogenous inducing signal during neural induction.  相似文献   

14.
S Sokol  D A Melton 《Nature》1991,351(6325):409-411
Activin, a peptide growth factor related to tumour growth factor-beta, has been implicated in early inductive interactions in vertebrates and can induce Xenopus blastula ectodermal explants to develop a rudimentary axial pattern with anteroposterior and dorsoventral polarity. Here we demonstrate that prospective dorsal and ventral regions of the ectoderm respond differently to the same concentration of activin. Thus, activin does not seem to endow ectodermal cells with polarity but rather reveals a pre-existent pattern. Our results suggest that patterning of mesoderm is determined not only by a localized inducer, but also by the differential competence of cells in the responding tissue.  相似文献   

15.
MicroRNAs 103 and 107 regulate insulin sensitivity   总被引:2,自引:0,他引:2  
Defects in insulin signalling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Here we show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. We identify caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. We demonstrate that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signalling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.  相似文献   

16.
Nodal signalling in the epiblast patterns the early mouse embryo.   总被引:2,自引:0,他引:2  
Shortly after implantation the mouse embryo comprises three tissue layers. The founder tissue of the embryo proper, the epiblast, forms a radially symmetric cup of epithelial cells that grows in close apposition to the extra-embryonic ectoderm and the visceral endoderm. This simple cylindrical structure exhibits a distinct molecular pattern along its proximal-distal axis. The anterior-posterior axis of the embryo is positioned later by coordinated cell movements that rotate the pre-existing proximal-distal axis. The transforming growth factor-beta family member Nodal is known to be required for formation of the anterior-posterior axis. Here we show that signals from the epiblast are responsible for the initiation of proximal-distal polarity. Nodal acts to promote posterior cell fates in the epiblast and to maintain molecular pattern in the adjacent extra-embryonic ectoderm. Both of these functions are independent of Smad2. Moreover, Nodal signals from the epiblast also pattern the visceral endoderm by activating the Smad2-dependent pathway required for specification of anterior identity in overlying epiblast cells. Our experiments show that proximal-distal and subsequent anterior-posterior polarity of the pregastrulation embryo result from reciprocal cell-cell interactions between the epiblast and the two extra-embryonic tissues.  相似文献   

17.
Endogenous human microRNAs that suppress breast cancer metastasis   总被引:6,自引:0,他引:6  
  相似文献   

18.
Campbell G 《Nature》2002,418(6899):781-785
Arthropods and higher vertebrates both possess appendages, but these are morphologically distinct and the molecular mechanisms regulating patterning along their proximodistal axis (base to tip) are thought to be quite different. In Drosophila, gene expression along this axis is thought to be controlled primarily by a combination of transforming growth factor-beta (TGF-beta) and Wnt signalling from sources of ligands, Decapentaplegic (Dpp) and Wingless (Wg), in dorsal and ventral stripes, respectively. In vertebrates, however, proximodistal patterning is regulated by receptor tyrosine kinase (RTK) activity from a source of ligands, fibroblast growth factors (FGFs), at the tip of the limb bud. Here I revise our understanding of limb development in flies and show that the distal region is actually patterned by a distal-to-proximal gradient of RTK activity, established by a source of epidermal growth factor (EGF)-related ligands at the presumptive tip. This similarity between proximodistal patterning in vertebrates and flies supports previous suggestions of an evolutionary relationship between appendages/body-wall outgrowths in animals.  相似文献   

19.
M Whitman  D A Melton 《Nature》1992,357(6375):252-254
During early vertebrate embryogenesis, mesoderm is specified by a signal emanating from prospective endoderm. This signal can respecify Xenopus prospective ectoderm as mesoderm, and can be mimicked by members of the fibroblast growth factor and transforming growth factor-beta families. In other systems, the p21c-ras proto-oncogene product has been implicated in signal transduction for various polypeptide growth factors. We report here that a dominant inhibitory ras mutant blocks the mesoderm-inducing activity of fibroblast growth factor and activin, as well as the endogenous inducing activity of prospective endoderm. A constitutively active ras mutant partially mimics these activities. These results indicate that p21ras may have a central role in the transduction of the mesoderm inductive signal. Basic fibroblast growth factor and activin have emerged as candidates for endogenous mesoderm-inducing molecules. The character of the mesoderm induced by these two factors is overlapping but distinct when assessed both by histological and molecular criteria. The signal transduction pathways used during induction by these factors are unknown. We used messenger RNA microinjection of Xenopus eggs to express a dominant inhibitory mutant ras, p21(Asn 17)Ha-ras, in cells competent to respond to inducing factors to examine the role of p21ras in this response. This mutant, which has a reduced affinity for GTP relative to GDP, blocks a variety of mitogenic signals in 3T3 fibroblasts as well as the differentiation of pheochromocytoma cells in response to nerve growth factor.  相似文献   

20.
SMAD proteins control DROSHA-mediated microRNA maturation   总被引:3,自引:0,他引:3  
Davis BN  Hilyard AC  Lagna G  Hata A 《Nature》2008,454(7200):56-61
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号