首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Williams MA  Tyznik AJ  Bevan MJ 《Nature》2006,441(7095):890-893
Although interleukin-2 (IL-2) was initially characterized as the primary T-cell growth factor following in vitro activation, less is known about its role in shaping T-cell responses to acute infections in vivo. The use of IL-2- or IL-2-receptor-deficient mice is problematic owing to their early development of autoimmunity, attributable to the central role of IL-2 in the generation, maintenance and function of CD4+CD25+ regulatory T cells. To bypass these inherent difficulties, we have studied the effect of IL-2 on T-cell responses to acute infections by adopting a mixed chimaera strategy in which T cells lacking the high-affinity IL-2 receptor could be studied in an otherwise healthy mouse containing a full complement of regulatory T cells. Here we show that although IL-2 signalling to pathogen-specific CD8+ T cells affects the number of developing effector and memory cells very little, it is required for the generation of robust secondary responses. This is not due to an altered T-cell-receptor repertoire development or selection, and does not reflect an acute requirement for IL-2 during secondary activation and expansion. Rather, we demonstrate a previously unappreciated role for IL-2 during primary infection in programming the development of CD8+ memory T cells capable of full secondary expansion. These results have important implications for the development of vaccination or immunotherapeutic strategies aimed at boosting memory T-cell function.  相似文献   

2.
Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4(+) helper T cells and CD8(+) killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4(+) and CD8(+) T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8(+) T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4(+) T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4(+) T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4(+) and CD8(+) subsets.  相似文献   

3.
Gu L  Tseng S  Horner RM  Tam C  Loda M  Rollins BJ 《Nature》2000,404(6776):407-411
Activated T lymphocytes differentiate into effector cells tailored to meet disparate challenges to host integrity. For example, type 1 and type 2 helper (T(H)1 and T(H)2) cells secrete cytokines that enhance cell-mediated and humoral immunity, respectively. The chemokine monocyte chemoattractant protein-1 (MCP-1) can stimulate interleukin-4 production and its overexpression is associated with defects in cell-mediated immunity, indicating that it might be involved in T(H)2 polarization. Here we show that MCP-1-deficient mice are unable to mount T(H)2 responses. Lymph node cells from immunized MCP-1(-/-) mice synthesize extremely low levels of interleukin-4, interleukin-5 and interleukin-10, but normal amounts of interferon-gamma and interleukin-2. Consequently, these mice do not accomplish the immunoglobulin subclass switch that is characteristic of T(H)2 responses and are resistant to Leishmania major. These effects are direct rather than due to abnormal cell migration, because the trafficking of naive T cells is undisturbed in MCP-1(-/-) mice despite the presence of MCP-1-expressing cells in secondary lymphoid organs of wild-type mice. Thus, MCP-1 influences both innate immunity, through effects on monocytes, and adaptive immunity, through control of T helper cell polarization.  相似文献   

4.
A hallmark of adaptive immunity is the generation of memory T cells that confer long-lived, antigen-specific protection against repeat challenges by pathogens. Understanding the mechanisms by which memory T cells arise is important for rational vaccination strategies and improved therapeutic interventions for chronic infections and autoimmune disorders. The large clonal expansion of CD8 T cells in response to some infections has made the development of CD8 T-cell memory more amenable to study, giving rise to a model of memory cell differentiation in which a fraction of fully competent effector T cells transition into long-lived memory T cells. Delineation of CD4 T-cell memory development has proved more difficult as a result of limitations on tracking the smaller populations of CD4 effector T cells generated during a pathogenic challenge, complicating efforts to determine whether CD4 memory T cells are direct descendants of effector T cells or whether they develop by alternative pathways. Here, using two complementary cytokine reporter mouse models to identify interferon (IFN)-gamma-positive effector T cells and track their fate, we show that the lineage relationship between effector and memory CD4 T cells resembles that for CD8 T cells responding to the same pathogen. We find that, in parallel with effector CD8 T cells, IFN-gamma-positive effector CD4 T cells give rise to long-lived memory T cells capable of anamnestic responses to antigenic rechallenge.  相似文献   

5.
The 'help' provided by CD4+ T lymphocytes during the priming of CD8+ T lymphocytes confers a key feature of immune memory: the capacity for autonomous secondary expansion following re-encounter with antigen. Once primed in the presence of CD4+ T cells, 'helped' CD8+ T cells acquire the ability to undergo a second round of clonal expansion upon restimulation in the absence of T-cell help. 'Helpless' CD8+ T cells that are primed in the absence of CD4+ T cells, in contrast, can mediate effector functions such as cytotoxicity and cytokine secretion upon restimulation, but do not undergo a second round of clonal expansion. These disparate responses have features of being 'programmed', that is, guided by signals that are transmitted to naive CD8+ T cells during priming, which encode specific fates for their clonal progeny. Here we explore the instructional programme that governs the secondary response of CD8+ T cells and find that helpless cells undergo death by activation-induced cell death upon secondary stimulation. This death is mediated by tumour-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Regulation of Trail expression can therefore account for the role of CD4+ T cells in the generation of CD8+ T cell memory and represents a novel mechanism for controlling adaptive immune responses.  相似文献   

6.
A long-standing paradox in cellular immunology concerns the conditional requirement for CD4+ T-helper (T(H)) cells in the priming of cytotoxic CD8+ T lymphocyte (CTL) responses in vivo. Whereas CTL responses against certain viruses can be primed in the absence of CD4+ T cells, others, such as those mediated through 'cross-priming' by host antigen-presenting cells, are dependent on T(H) cells. A clearer understanding of the contribution of T(H) cells to CTL development has been hampered by the fact that most T(H)-independent responses have been demonstrated ex vivo as primary cytotoxic effectors, whereas T(H)-dependent responses generally require secondary in vitro re-stimulation for their detection. Here, we have monitored the primary and secondary responses of T(H)-dependent and T(H)-independent CTLs and find in both cases that CD4+ T cells are dispensable for primary expansion of CD8+ T cells and their differentiation into cytotoxic effectors. However, secondary CTL expansion (that is, a secondary response upon re-encounter with antigen) is wholly dependent on the presence of T(H) cells during, but not after, priming. Our results demonstrate that T-cell help is 'programmed' into CD8+ T cells during priming, conferring on these cells a hallmark of immune response memory: the capacity for functional expansion on re-encounter with antigen.  相似文献   

7.
Kemper C  Chan AC  Green JM  Brett KA  Murphy KM  Atkinson JP 《Nature》2003,421(6921):388-392
The immune system must distinguish not only between self and non-self, but also between innocuous and pathological foreign antigens to prevent unnecessary or self-destructive immune responses. Unresponsiveness to harmless antigens is established through central and peripheral processes. Whereas clonal deletion and anergy are mechanisms of peripheral tolerance, active suppression by T-regulatory 1 (Tr1) cells has emerged as an essential factor in the control of autoreactive cells. Tr1 cells are CD4+ T lymphocytes that are defined by their production of interleukin 10 (IL-10) and suppression of T-helper cells; however, the physiological conditions underlying Tr1 differentiation are unknown. Here we show that co-engagement of CD3 and the complement regulator CD46 in the presence of IL-2 induces a Tr1-specific cytokine phenotype in human CD4+ T cells. These CD3/CD46-stimulated IL-10-producing CD4+ cells proliferate strongly, suppress activation of bystander T cells and acquire a memory phenotype. Our findings identify an endogenous receptor-mediated event that drives Tr1 differentiation and suggest that the complement system has a previously unappreciated role in T-cell-mediated immunity and tolerance.  相似文献   

8.
Li Q  Duan L  Estes JD  Ma ZM  Rourke T  Wang Y  Reilly C  Carlis J  Miller CJ  Haase AT 《Nature》2005,434(7037):1148-1152
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.  相似文献   

9.
CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.  相似文献   

10.
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IkappaB kinase (IKK)-beta-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-beta show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (T(H)2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-alpha, increased levels of CD4+ T-cell-derived interferon-gamma and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-beta in IECs to promote CD4+ T(H)2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-beta-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.  相似文献   

11.
This study was designed to test the hypothesis that T-cell effector mechanisms are required for protective immunity to malaria sporozoites. Administration of neutralizing monoclonal antibodies against gamma interferon (gamma IFN) to immune hosts, reversed sterile immunity to sporozoite challenge, by allowing the growth of exoerythrocytic forms (EEF) and thus the development of parasitaemia. Immune animals also developed infections when depleted in vivo of their suppressor/cytotoxic T cells expressing the CD8 antigen (CD8+) but not when depleted of helper T cells expressing CD4 antigen (CD4+), before sporozoite challenge. Passive transfer of immune immunoglobin alone, or adoptive transfer of immune T cells alone, conferred partial protection to naive recipients. Transfer of both immune components resulted in significantly greater protection. This transferred immunity was reversed by the in vivo neutralization of gamma IFN. Thus, sterile immunity to sporozoite challenge requires the neutralization of sporozoites by antibodies and the inhibition of EEF development by gamma IFN with the participation of CD8+ cells.  相似文献   

12.
T cells express T-cell antigen receptors (TCR) for the recognition of antigen in conjunction with the products of the major histocompatibility complex. They also express two key surface coreceptors, CD4 and CD8, which are involved in the interaction with their ligands. As CD4 is expressed on the early haemopoietic progenitor as well as the early thymic precursor cells, a role for CD4 in haemopoiesis and T-cell development is implicated. Thymocytes undergo a series of differentiation and selection steps to become mature CD4+8- or CD4-8+ (single positive) T cells. Studies of the role of CD4+ T cells in vivo have been based on adoptive transfer of selected or depleted lymphocytes, or in vivo treatment of thymectomized mice with monoclonal antibodies causing depletion of CD4+ T cells. In order to study the role of the CD4 molecule in the development and function of lymphocytes, we have disrupted the CD4 gene in embryonic stem cells by homologous recombination. Germ-line transmission of the mutation produces mutant mouse strains that do not express CD4 on the cell surface. In these mice, the development of CD8+ T cells and myeloid components is unaltered, indicating that expression of CD4 on progenitor cells and CD4+ CD8+ (double positive) thymocytes is not obligatory. Here we report that these mice have markedly decreased helper cell activity for antibody responses, although cytotoxic T-cell activity against viruses is in the normal range. This differential requirement for CD4+ helper T cells is important to our understanding of immune disorders including AIDS, in which CD4+ cells are reduced or absent.  相似文献   

13.
Interleukin-4 mediates CD8 induction on human CD4+ T-cell clones   总被引:15,自引:0,他引:15  
X Paliard  R W Malefijt  J E de Vries  H Spits 《Nature》1988,335(6191):642-644
CD4 and CD8 antigens are simultaneously expressed on most of the cortical thymocytes, that weakly express the T-cell antigen receptor(TCR)/CD3 complex. Mature peripheral T cells, however, strongly express the TCR complex and are positive for either CD4 or CD8. Nevertheless, a small percentage of peripheral CD3+ T cells express CD4 and CD8 simultaneously. These mature, double positive cells could be intermediates between CD4+CD8+ thymocytes and mature, single positive T cells, or they may originate from single positive T cells that acquire either CD4 or CD8. Here we report that activation and culturing of cloned CD4+ T cells in interleukin-4 (IL-4), results in the acquisition of CD8 due to its de novo synthesis. The IL-4-induced co-expression of CD8 on CD4+ T cells is reversible, in that CD8 disappeared from double positive T-cell clones isolated in IL-4, when they were cultured in IL-2. CD8 induced by IL-4 can be functional as a monoclonal antibody to CD8 inhibited anti-CD3-mediated cytotoxicity by a double positive T-cell clone.  相似文献   

14.
Watanabe N  Wang YH  Lee HK  Ito T  Wang YH  Cao W  Liu YJ 《Nature》2005,436(7054):1181-1185
Hassall's corpuscles-first described in the human thymus over 150 years ago-are groups of epithelial cells within the thymic medulla. The physical nature of these structures differs between mammalian species. Although Hassall's corpuscles have been proposed to act in both the removal of apoptotic thymocytes and the maturation of developing thymocytes within the thymus, the function of Hassall's corpuscles has remained an enigma. Here we report that human Hassall's corpuscles express thymic stromal lymphopoietin (TSLP). Human TSLP activates thymic CD11c-positive dendritic cells to express high levels of CD80 and CD86. These TSLP-conditioned dendritic cells are then able to induce the proliferation and differentiation of CD4(+)CD8(-)CD25(-) thymic T cells into CD4(+)CD25(+)FOXP3(+) (forkhead box P3) regulatory T cells. This induction depends on peptide-major histocompatibility complex class II interactions, and the presence of CD80 and CD86, as well as interleukin 2. Immunohistochemistry studies reveal that CD25(+)CTLA4(+) (cytotoxic T-lymphocyte-associated protein 4) regulatory T cells associate in the thymic medulla with activated or mature dendritic cells and TSLP-expressing Hassall's corpuscles. These findings suggest that Hassall's corpuscles have a critical role in dendritic-cell-mediated secondary positive selection of medium-to-high affinity self-reactive T cells, leading to the generation of CD4(+)CD25(+) regulatory T cells within the thymus.  相似文献   

15.
为研究慢性特发性血小板减少性紫癜(CITP)患者外周血CIM+CD25+调节性T细胞(Treg)数量及转化生长因子β1(TGF—β1)的表达水平,探讨它们在CITP发病机制中的作用。流式细胞仪分别检测26例CITP患者及20例健康人外周血Treg细胞的数量,ELISA法检测血清中TGF—β1的含量,并进行相关性分析。CITP患者外周血Treg细胞的数量明显低于正常对照组(P〈0.05);CITP患者血清TGF—β1的含量也低于正常对照组(P〈0.05),差异有统计学意义,CITP患者外周血Treg细胞的比例与血清中TGF—β1的含量都呈正相关(P〈0.05)。CITP患者外周血中Treg细胞数量的减少及TGF-β1含量的降低可能与CITP的细胞免疫失调有关。  相似文献   

16.
R L Tarleton  B H Koller  A Latour  M Postan 《Nature》1992,356(6367):338-340
The beta 2-microglobulin (beta 2m) protein associates with the products of the class I major histocompatibility (MHC) loci; this combination functions in the thymic development of and antigen presentation to CD8+ T cells. Mice in which the beta 2m gene has been disrupted by homologous recombination fail to express class I MHC gene products, and therefore lack CD8+ T cells and measurable cytotoxic T-cell responses. However, beta 2m- mice appear to have normal development of both CD4+ alpha/beta T-cell receptor (TCR+) and gamma/delta TCR+ T cells and are not overtly more susceptible than beta 2m+ mice to potential environmental agents of infection or to experimental viral infection. Here we show that beta 2m- mice suffer high parasitaemias and early death when infected with the obligate cytoplasmic protozoan parasite Trypanosoma cruzi. Despite this increased susceptibility, the beta 2m- mice are more responsive than their beta 2m+ littermates in terms of lymphokine production, making higher levels of both interleukin-2 and interferon-gamma in response to mitogen stimulation. In addition, the beta 2m- mice show essentially no inflammatory response in parasite-infected tissues. These results confirm previous experiments on mice depleted of CD8+ cells using antibody treatment in demonstrating the importance of CD8+ T cells in immune protection in T. cruzi infection. They also implicate CD8+ T cells and/or class I MHC molecules in regulation of lymphokine production and recruitment of inflammatory cells.  相似文献   

17.
Cytotoxic T lymphocytes (CTL) seem to provide the major line of defence against many viruses. CTL effector functions are mediated primarily by cells carrying the CD8 (Ly-2) antigen (CD8+ cells) and are triggered by interactions of the T-cell receptor with an antigenic complex, often termed 'self plus X', composed of viral determinants in association with class I molecules of the major histocompatibility complex (MHC). The mechanism(s) of induction of virus-specific CTL in vivo is poorly understood, but data from in vitro experiments suggest that their generation is strictly dependent on functions provided by CD4+ helper T cells (also referred to as L3T4+; or TH) that respond to antigens in the context of class II (Ia) MHC determinants. The prevailing opinion that induction of most functions of CD8+ cells requires help provided by CD4+ cells has recently been challenged by the observation that CD8+ cells alone can mediate a variety of responses to alloantigens in vitro and in vivo; however, the possibility that CTL to self plus X could be generated in vivo in the absence of TH cells has not been evaluated. We report here that C57BL/6J (B6) and AKR/J mice, when functionally depleted of CD4+ cells by in vivo treatment with the CD4+-specific rat monoclonal antibody GK1.5 (refs 8-14) responded to ectromelia virus infection by developing an optimal in vivo virus-specific CTL response, and subsequently recovered from the disease (mousepox) that was lethal for similarly infected nude mice (CD4-, CD8-).  相似文献   

18.
A Bendelac  R H Schwartz 《Nature》1991,353(6339):68-71
Peripheral CD4+ and CD8+ T lymphocytes carry out different functions during immune reactions, partly as a result of the distinct patterns of lymphokines that they secrete upon stimulation. Using thymic cells from adult and newborn mice as well as from fetal organ cultures, we show here that this functional differentiation occurs inside the thymus and is completed during the single positive stage by the time the T-cell receptor becomes fully coupled to the intracellular activation pathways leading to lymphokine secretion. Surprisingly, CD4+8- thymocytes differ from their immediate progeny, naive peripheral CD4+ cells, in that they secrete a broader range of lymphokines, including interleukins 4, 5 and 10 and gamma-interferon, and more closely resemble immunologically experienced (activated or memory) CD4+ lymphocytes.  相似文献   

19.
Bettelli E  Carrier Y  Gao W  Korn T  Strom TB  Oukka M  Weiner HL  Kuchroo VK 《Nature》2006,441(7090):235-238
On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号