共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) is well established, but the origin of major tetrapod features has remained obscure for lack of fossils that document the sequence of evolutionary changes. Here we report the discovery of a well-preserved species of fossil sarcopterygian fish from the Late Devonian of Arctic Canada that represents an intermediate between fish with fins and tetrapods with limbs, and provides unique insights into how and in what order important tetrapod characters arose. Although the body scales, fin rays, lower jaw and palate are comparable to those in more primitive sarcopterygians, the new species also has a shortened skull roof, a modified ear region, a mobile neck, a functional wrist joint, and other features that presage tetrapod conditions. The morphological features and geological setting of this new animal are suggestive of life in shallow-water, marginal and subaerial habitats. 相似文献
3.
Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia 总被引:3,自引:0,他引:3
Genetic and molecular studies on the expression of Antennapedia (Antp) have suggested that this gene specifies mainly the second thoracic segment. On the basis of our molecular analysis of dominant gain-of-function mutants we have postulated that the transformation of antennae into second legs is due to the ectopic overexpression of the Antp+ protein. This hypothesis was tested by inserting the complementary DNA encoding the normal Antp protein into a heat-shock expression vector and subsequent germ-line transformation. As predicted, heat induction at defined larval stages leads to the transformation of antennae into second legs. The dorsal part of the head can also be transformed into second thoracic structures (scutum) indicating that Antp indeed specifies the second thoracic segment. By ectopic overexpression of the Antp protein the body plan of the fruit fly can be altered in a predictable way. 相似文献
4.
5.
6.
Takio Y Pasqualetti M Kuraku S Hirano S Rijli FM Kuratani S 《Nature》2004,429(6989):1 p following 262
7.
The development of jaws was a critical event in vertebrate evolution because it ushered in a transition to a predatory lifestyle, but how this innovation came about has been a mystery. In the embryos of jawed vertebrates (gnathostomes), the jaw cartilage develops from the mandibular arch, where none of the Hox genes is expressed; if these are expressed ectopically, however, jaw development is inhibited. Here I show that in the lamprey, a primitively jawless (agnathan) fish that is a sister group to the gnathostomes, a Hox gene is expressed in the mandibular arch of developing embryos. This finding, together with outgroup comparisons, suggests that loss of Hox expression from the mandibular arch of gnathostomes may have facilitated the evolution of jaws. 相似文献
8.
9.
Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect 总被引:13,自引:0,他引:13
Insect antifreeze proteins (AFP) are considerably more active at inhibiting ice crystal growth than AFP from fish or plants. Several insect AFPs, also known as thermal hysteresis proteins, have been cloned and expressed. Their maximum activity is 3-4 times that of fish AFPs and they are 10-100 times more effective at micromolar concentrations. Here we report the solution structure of spruce budworm (Choristoneura fumiferana) AFP and characterize its ice-binding properties. The 9-kDa AFP is a beta-helix with a triangular cross-section and rectangular sides that form stacked parallel beta-sheets; a fold which is distinct from the three known fish AFP structures. The ice-binding side contains 9 of the 14 surface-accessible threonines organized in a regular array of TXT motifs that match the ice lattice on both prism and basal planes. In support of this model, ice crystal morphology and ice-etching experiments are consistent with AFP binding to both of these planes and thus may explain the greater activity of the spruce budworm antifreeze. 相似文献
10.
Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head 总被引:7,自引:0,他引:7
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning. 相似文献
11.
The green fluorescence of bioluminescent jellyfishAequorea victoria is due to the presence of the green fluorescent protein (GFP). To examine whether the GFP gene can be applied as a reporter
gene in insect cells, a baculovirus transfer vector containing the neomycin resistance gene (neo) was established. The GFP
gene was subcloned into the vector downstream of the polyhedrin gene (ocu) promoter. In the presence of G418, the recombinant
virus can be purified. Expression of the GFP gene in the recombinant virus should give rise to synthesis of the GFP with a
molecular weight of 30×103 dalton, and is observable by the strong green light irradiated by ultraviolet or blue light in viable intact insect cells.
The GFP produced in insect cells has typical fluorescent spectra indistinguishable from those of the purified native GFP.
The GFP gene as a good reporter gene can be applied to the baculovirus-insect cell expression system.
Supported by the National Natural Science Foundation of China
Hu Jianhong: born in July, 1972, Master graduate student 相似文献
12.
Ultrastructure of the insect ear 总被引:1,自引:0,他引:1
13.
A Schneider P Montague I Griffiths M Fanarraga P Kennedy P Brophy K A Nave 《Nature》1992,358(6389):758-761
Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease. 相似文献
14.
During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes. 相似文献
15.
A distinct Hox code for the branchial region of the vertebrate head. 总被引:20,自引:0,他引:20
P Hunt M Gulisano M Cook M H Sham A Faiella D Wilkinson E Boncinelli R Krumlauf 《Nature》1991,353(6347):861-864
The branchial region of the vertebrate head forms through complex interactions involving rhombomeric segments, neural crest and branchial arches. It is though that aspects of their patterning mechanisms are linked and involve Hox-2 genes, whose overlapping and spatially restricted expression domains represent a combinatorial code for generating regional diversity. Vertebrates possess four Hox clusters of Antennapedia class homeobox genes, related to each other by duplication and divergence from a common ancestral complex. In consequence, at equivalent positions in different clusters there are highly related genes known as subfamilies or paralogous groups. As Hox-2 genes cannot fully account for patterning individual rhombomeres, we investigated whether offsets in expression limits of paralogous genes could account for the generation of regional diversity. We report here that, with the exception of the labial subfamily, paralogues show identical expression limits in rhombomeres, cranial ganglia and branchial arches, providing a combinatorial Hox code for the branchial region that seems to be different in organization to that of the trunk. 相似文献
16.
Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers 总被引:6,自引:0,他引:6
A pentameric membrane protein composed of four types of polypeptide has been identified as the minimal structural unit responsible for the electrogenic action of acetylcholine on electrocytes and muscle cells. Because many populations of central and peripheral neurons also have nicotinic acetylcholine receptors (AChRs), considerable effort has recently gone into identifying the neuronal receptor. The central nervous tissue of insects contains very high concentrations of nicotinic AChRs, and we have recently purified an alpha-toxin binding protein, a putative AChR, from neuronal membranes of locusts. It is a component of high relative molecular mass, clearly composed of identical subunits, a structure predicted for an ancestral AChR protein. To verify that the purified polypeptides not only represent ligand binding sites but that they are indeed functional receptors, we have now reconstituted the isolated protein in a planar lipid bilayer. We show that in this system cholinergic agonists activate functional ion channels, that have properties comparable to those exhibited by the peripheral AChRs in vertebrates; thus, for the first time a functional acetylcholine receptor channel has been identified in nerve cells. 相似文献
17.
对数学教育专业课程设置的构想 总被引:1,自引:0,他引:1
黎明 《曲靖师范学院学报》2003,22(6):47-51
基础教育数学课程改革已全面启动,师范院校数学教育专业应在分析现在课程设置的基础上,根据数学教师专业化的要求,构建新的课程体系,提出改革的策略和建议,推动基础教育改革的发展. 相似文献
18.
SHIGEMATSU H 《Nature》1958,182(4639):880-882
19.
20.
Comparative analyses of Hox gene expression and regulation in teleost fish and tetrapods support the long-entrenched notion that the distal region of tetrapod limbs, containing the wrist, ankle and digits, is an evolutionary novelty. Data from fossils support the notion that the unique features of tetrapod limbs were assembled over evolutionary time in the paired fins of fish. The challenge in linking developmental and palaeontological approaches has been that developmental data for fins and limbs compare only highly derived teleosts and tetrapods; what is lacking are data from extant taxa that retain greater portions of the fin skeletal morphology considered primitive to all bony fish. Here, we report on the expression and function of genes implicated in the origin of the autopod in a basal actinopterygian, Polyodon spathula. Polyodon exhibits a late-phase, inverted collinear expression of 5' HoxD genes, a pattern of expression long considered a developmental hallmark of the autopod and shown in tetrapods to be controlled by a 'digit enhancer' region. These data show that aspects of the development of the autopod are primitive to tetrapods and that the origin of digits entailed the redeployment of ancient patterns of gene activity. 相似文献