共查询到20条相似文献,搜索用时 15 毫秒
1.
为深入研究苜蓿中华根瘤菌NifA的特性, 分别用组成型表达的慢生型大豆根瘤菌和紫云英根瘤菌的nifA 基因互补苜蓿中华根瘤菌nifA 突变体, 观察其共生表型. 结果表明, 慢生型大豆根瘤菌和紫云英根瘤菌nifA 基因不能互补苜蓿中华根瘤菌nifA 突变体的共生表型. 以苜蓿中华根瘤菌 nifA 突变体为遗传背景, 利用全基因组微阵列实验比较分析引入异源nifA 基因后产生的基因表达谱的变化. 结果显示, 苜蓿中华根瘤菌自身NifA蛋白引起238个基因的表达发生变化. 这些表达差异的基因分属共生、能量和中心代谢、持家、细胞结构与运输等生物学功能组. 慢生型大豆根瘤菌、紫云英根瘤菌和阴沟肠杆菌的NifA蛋白分别引起了20, 7和9个基因的表达发生变化. 这些基因主要是固氮相关基因, 但差异不及苜蓿中华根瘤菌NifA互补菌明显. 以苜蓿中华根瘤菌nifH启动子与lacZ融合基因为报道基因, 研究nifH的表达. 结果指出, 慢生型大豆根瘤菌和紫云英根瘤菌的NifA蛋白只能部分激活苜蓿中华根瘤菌nifH的表达, 激活水平分别为苜蓿中华根瘤菌NifA蛋白激活率的70%和50%, 与微阵列实验结果相符. 相似文献
2.
在植物发育生物学研究中, 对很多非模式植物基因功能的研究总是因为缺乏快速有效的方法而受到限制. 病毒诱导的基因沉默(virus induced gene silencing, VIGS)技术是近年来发展起来的一种反向遗传学快速研究基因功能的方法. 本研究利用一种基于PEBV (pea early browning virus)的VIGS体系研究了豌豆PsPI基因的功能. 豌豆在其PsPI基因沉默后出现了类似于拟南芥pi突变体/金鱼草glo突变体的表型, 导致花瓣向萼片以及雄蕊向心皮转变. 半定量RT-PCR分析发现, 在VIGS-PsPI沉默植株花苞中, PsPI基因的mRNA水平显著下降. mRNA原位杂交结果显示, PsPI基因早期在起始共同原基的部位表达, 后期在花器官第二、三轮表达. 本研究结果证明了PsPI基因具有拟南芥PI/金鱼草GLO同源基因的功能, 说明这类基因在进化和功能上是相当保守的, 同时也表明VIGS是一种研究植物基因功能的快速有效的方法, 特别是对于那些转化困难的非模式植物基因功能的研究具有更为重要的意义. 相似文献
3.
4.
转OsNHX1基因耐盐84K杨的培育 总被引:2,自引:1,他引:2
采用农杆菌介导的方法将水稻Na+/H+反向转运器基因OsNHX1导入84K杨, 获得3株抗性转化植株, PCR, Southern 和Northern检测结果表明, OsNHX1基因已经整合到84K杨基因组中, 并可以稳定表达. 耐盐实验表明, 3个株系的转基因植株能在200 mmol/L NaCl条件下正常生长. 对盐胁迫处理的转基因植株进行Na+含量和渗透势测定, 发现转基因植株叶片中的Na+明显高于对照植株, 其渗透势明显低于对照植株. 分子检测和耐盐性实验表明OsNHX1基因的转化获得成功, 并获得84K杨耐盐转基因 植株. 相似文献
5.
水稻花优势表达基因RA68的克隆和特性分析 总被引:1,自引:0,他引:1
利用减法杂交和RACEs从水稻花中克隆了1个编码含丰富脯氨酸和苏氨酸结构域多肽的cDNA, 其相应的基因命名为RA68. RA68含3个外显子和2个内含子, 编码由219个氨基酸残基组成的蛋白质. 数据分析结果显示, 该蛋白由1个22个氨基酸残基组成的信号肽, 1个亲水性的N-端结构域和1个疏水性的C-端结构域组成. N-端结构域是一段嵌合PTPTSYG motif的富含脯氨酸和苏氨酸的序列. Southern blot和序列分析结果表明, RA68在水稻基因组以单拷贝存在, 定位于第2号染色体. Northern杂交结果表明, RA68在幼芽和花中表达量较高, 在根和叶中不表达. 花和幼芽进行原位杂交分析结果表明, 在花中, RA68在花粉母细胞、二分体细胞、单核花粉粒以及大孢子囊中表达. 基于该基因的表达特性及其编码蛋白质的结构特征, 探讨了其在花发育中的可能功能. 相似文献
6.
耐辐射球菌DNA修复开关基因pprI缺陷性突变和功能补偿性突变株的建立 总被引:1,自引:3,他引:1
PprI是近来在耐辐射球菌Deinococcus radiodurans中发现的一个极其重要的DNA修复开关基 因. 以已测序的野生型菌株R1为材料, 运用PCR突变法将克隆具有自身GroEL启动子和卡那霉素抗性基因的DNA片段反向重组到pprI基因中去, 首次获得了卡那霉素抗性的、pprI功能完全破坏的突变株YR1. 辐射细胞生存率结果表明, YR1对辐射异常敏感. 另外, 将含有GroEL启动子和卡那霉素抗性基因的DNA片段重组到质粒pRADZ3中, 获得了具有卡那霉素抗性的表达质粒pRADK; 再将体外克隆的具有pprI完整基因和C-末端结构域截短的PprI蛋白基因片段分别重组到pRADK中. 研究结果表明, 含有pprI完整基因的表达质粒在YR1中能够正常表达, 并完全恢复到野生型的极端抗性; 而C-末端结构域截短的PprI蛋白基因片段虽能在YR1中正常表达, 但对辐射异常敏感, 不能恢复其极端抗性. 上述pprI基因功能缺陷性和功能补偿性突变株的建立, 为深入研究细胞体内PprI蛋白质的定位、结构域与功能的关系, 以及原位研究PprI蛋白质的理化特性提供了十分有效的方法 相似文献
7.
p14ARF高表达对γ射线诱导的人黑色素瘤细胞凋亡的影响 总被引:1,自引:0,他引:1
抑癌因子ARF可以激活p53诱导细胞周期的阻断或凋亡. 为阐明ARF在促进细胞凋亡作用中的分子机理, 建立了高表达p14ARF的人黑色素瘤A375细胞模型. 实验表明, p14ARF高表达能促进p53富集在细胞核. 经 γ 射线照射后,发现p14ARF高表达能促进A375细胞凋亡, 促使Smac从线粒体释放到胞质中, p53, Bax, Caspase-3, Caspase-9, p21cip1和p27kip1蛋白水平明显提高, 而Bcl-2和磷酸化的ERK蛋白水平下降. 提示γ 射线辐照下, p14ARF促进A375细胞凋亡是ERK介入的依赖p53的以线粒体为核心的凋亡途径. 相似文献
8.
EB病毒潜伏膜蛋白1介导c-Jun/Jun B异源二聚体对p16的调节 总被引:6,自引:0,他引:6
EB病毒编码的潜伏膜蛋白 1 (LMP1)是重要的致瘤蛋白, 可活化包括AP-1在内的多个转录因子. 转录因子功能性活化体现在其与靶基因启动子结合, 反式激活靶基因转录, 调节靶基因的表达, 从而发挥其生物学效应. 最近发现LMP1可介导c-Jun/Jun B活性异源二聚体的形成, 为寻找其靶基因提供了重要的依据. 采用生物信息学技术, 确定了c-Jun/Jun B活性异源二聚体调控的潜在靶基因p16; 在此基础上, 利用建立的Tet-on系统调控LMP1表达的细胞系, 采用间接免疫荧光法联合激光共聚焦荧光显微镜技术、Western blot方法、荧光素酶活性检测、Super-EMSA方法和流式细胞术, 探讨LMP1介导c-Jun/Jun B异源二聚体对p16的调节功能. 结果表明, LMP1介导的c-Jun/Jun B异源二聚体可下调p16启动子活性及其表达, 并影响细胞的演进. 该研究在AP-1信号传导通路和细胞周期之间建立了新的直接联系, 从而为肿瘤发病机制研究提供了新的思路和实验模式. 相似文献
9.
利用减法杂交和RACEs从水稻颖花中克隆了一个编码富含脯氨酸残基多肽的cDNA, 并将其相应的基因命名为OsPRP1. OsPRP1由2个外显子和1内含子组成, 编码的蛋白由224个氨基酸残基组成, 其中脯氨酸含量最高, 占14.29%. 该蛋白由一个21个氨基酸残基组成的信号肽, 一个N-端结构域和一个C-端结构域组成. C-端含有2个18个氨基酸长的、嵌合PEPK基元(motif)的富含脯氨酸的重复序列. Southern blot及序列分析结果表明, 水稻基因组中存在4个拷贝的OsPRP1, 它们定位在第10染色体的20 kb的DNA片段上. RT-PCR表明, OsPRP1在幼芽和颖花中表达量较高, 在根和叶中有少量表达. 用花和幼芽进行原位杂交分析证明在花中, OsPRP1在花粉母细胞、绒毡层细胞和花器官的维管束细胞中表达; 该基因的表达有明显的时间特异性, 在花粉母细胞中表达量最高, 在单核期的小孢子中几乎不表达; 在芽中, 该基因在胚芽鞘和叶原基的表皮细胞中表达. 从该基因编码蛋白的特点可以看出它极可能是一种细胞壁蛋白. 相似文献
10.
一种新的有机磷降解酶基因ophc2的克隆与表达 总被引:9,自引:1,他引:9
将来源于假产碱假单胞菌(Pseudomonas pseudoalcaligenes)的有机磷降解酶OPHC2进行了N端及内肽的氨基酸序列测定, 根据得到的氨基酸序列设计合成了简并引物, 通过PCR和反向PCR从Pseudomonas pseudoalcaligenes中克隆出有机磷降解酶基因ophc2. 编码基因全长975 bp, (G+C)含量为63%, 有一个可读框, 编码324个氨基酸, 酶蛋白理论分子量为36 kD. 编码基因的核苷酸序列分析表明,与目前发表的有机磷降解酶基因相比同源性很低, 最高的只有46.4%, 说明这是一个新的有机磷降解酶基因. 将克隆得到的带有信号肽编码序列的和不带信号肽编码序列的有机磷降解酶基因, 分别与载体pET-30a构建重组表达质粒, 得到的表达产物具有正常的生物学活性. 相似文献
11.
水稻幼穗分化受阻突变体lhd的遗传分析与基因定位 总被引:6,自引:3,他引:6
从圭630/台湾粳的F1花药培养后代群体中发现了水稻幼穗分化受阻突变体lhd(leafy head), 其植株明显矮化, 叶片细小且丛生, 始终停留在营养生长阶段. 遗传分析表明, lhd受一对隐性基因控制, 该突变基因拟命名为lhd (t). 显然, LHD(t)是控制花序分化的关键基因. 以lhd杂合体与明恢77和京花8号杂交, 建立了2个F2群体. 在与京花8号杂交的F2群体中, 部分lhd植株表现出“中间类型”, 说明遗传背景会影响突变性状的表现. 利用已公布的水稻RM系列SSR标记及自行设计的SSR标记, 结合BSA和突变株(共498株)分析, 将LHD(t)基因定位在第10染色体长臂端, 其中标记SSR1, RM269, RM258, RM304和RM171位于一侧, 与LHD(t)的图距分别为6.4, 16.6, 18.4, 22.2和26.3 cM; SSR4和SSR5位于另一侧, 与LHD(t)的图距分别为0.6和2.2 cM. 该结果为进一步对LHD(t)的克隆和表达研究奠定了基础. 相似文献
12.
HIV-1gp41不同片段表达对E. coli细胞毒性作用分析 总被引:1,自引:0,他引:1
HIV-gp41基因在E. coli中难以表达, 为研究影响其表达的原因, 选择gp41不同区域构建表达质粒, 通过在E. coli BL21(DE3)中进行表达测定其对细菌的毒性作用. 结果表明, IPTG诱导后除质粒pET-HN2表达菌以外其余质粒表达菌大量死亡, 目的基因转录的mRNA量也迅速下降, [3H]尿嘧啶释放实验显示释放增加, 说明GP41蛋白的毒性作用主要表现为对表达菌细胞膜的破坏而成为其在E. coli中难以表达的主要原因. 相似文献
13.
Klebsiella oxytoca HP1 adhE基因插入失活法构建产氢重组菌 总被引:3,自引:0,他引:3
乙醇是产酸克雷伯氏菌(Klebsiella oxytoca) HP1厌氧发酵产H2的主要副产物, 每生成1.0 mol的乙醇需要消耗2.0 mol NAD(P)H, 从而降低了H2的产量. 本研究以编码乙醇脱氢酶系(含乙醛脱氢酶和乙醇脱氢酶活性)的adhE基因为改造目标, 利用同源重组技术获得了以提高产氢为目标的K. oxytoca重组菌. 构建工作包括: 根据adhE基因保守序列框克隆K. oxytoca HP1 adhE基因片段, 以质粒pMHE6为模板进行链霉素抗性基因表达盒的扩增, 表达链霉素抗性的aadA基因片段和adhE基因片段分别与载体pMD18-T相连构建重组质粒, 同源整合质粒pTA-Str的构建, 以链霉素作为筛选标记筛选重组菌. 菌落PCR鉴定结果表明, aadA基因表达盒通过质粒pTA-Str的介导已定点插入K. oxytoca HP1基因组中, 成功地构建了adhE基因部分片段缺失的重组菌. 葡萄糖发酵实验结果表明, 相同发酵条件下, 重组菌比野生菌的产氢量提高了16.07%, 乙醇产量下降了70.47%. 利用基因工程技术提高产氢初步获得成功. 相似文献
14.
质体是植物细胞中一类重要的细胞器, 其正常分裂过程与植物细胞的分化和发育密切相关. 人们对于质体分裂的早期研究主要集中于质体分裂过程的形态学观察和对某些突变体材料的遗传学分析, 而对于控制质体分裂的分子基础尚无明晰的认识. 近年来, 随着原核细胞分裂基因类似物在植物中的发现以及对质体进化祖先原核生物细胞分裂机制的解析, 极大地促进了人们对质体分裂机制的认识. 通过对分裂相关基因的功能研究, 人们认为作为内共生产物的质体可能与其原核祖先具有相似的分裂机制, 特别是对在分裂过程中发挥关键作用的ftsZ基因功能的深入研究为人们从分子水平上认识质体分裂的机制奠定了坚实的基础. 本文对质体分裂的研究历史进行了简单的回顾, 并对近来质体分裂分子机制的研究进展做一简要评述. 相似文献
15.
用EST和SSR标记定位水稻温敏不育基因tms5 总被引:7,自引:0,他引:7
利用cDNA抑制差减杂交技术建立了水稻减数分裂时期穗部特异表达的SSH文库, 从中筛选121个cDNA片段作为EST (expressed sequence tags)标记, 用RFLP (restriction fragment length polymorphism)方法分析了温敏不育系安农S-1和正常品种安农N之间的多态性, 其中一个EST标记HN57可以检测到亲本间的多态性. 共分离分析结果表明, HN57与安农S-1的温敏不育性完全共分离, 进而将安农S-1的温敏不育基因tms5定位于RGP (rice genome research program)遗传图的第二染色体的31.2 cM处. 为了进行精细定位, 在该区域设计了80对SSR (simple sequence repeat)引物对, 用12对多态性引物将tms5定位于181 kb区间. 相似文献
16.
通过转δ-OAT基因获得抗盐抗旱水稻 总被引:13,自引:0,他引:13
δ-OAT基因编码的鸟氨酸-δ-氨基转移酶是以鸟氨酸为前体合成脯氨酸途径中的关键酶. 采用基因枪法将拟南芥δ-OAT基因导入粳稻品种中作321, 通过PCR及分子杂交分析确定目的基因已插入水稻染色体中并得到超量表达. 抗盐抗旱检测结果表明, 水稻在受到渗透胁迫时会大量积累脯氨酸, 各种条件下转基因水稻积累的脯氨酸是对照的5~15倍; 同等胁迫条件下转基因株系相对生长更快, 苗与根的生物学产量都要高于对照, 最后种子产量也显著高于对照, 如在0.1 mol/L NaCl胁迫下转基因株系相对产量提高了16%~41%, 说明δ-OAT基因超量表达并积累脯氨酸在抗渗透胁迫中有着重要作用, 通过转化δ-OAT基因可以获得抗盐抗旱的基因工程水稻. 相似文献
17.
在延缓性免疫排斥反应(DXR)过程中, NF-κB发挥着关键作用. 如何恰到好处地抑制其活性是本领域研究的重要问题之一. 用改造的E1A基因(E1AΔ)包括功能区(1 ~ 80氨基酸)和核定位区(139 ~ 243氨基酸), 删除其中可能对人体有害的CR2区, 将其克隆到真核表达载体pcDNA3中, 并转染猪血管内皮细胞(PAEC), 经G418筛选, 获得稳定表达细胞株. RT-PCR技术和细胞生长曲线分析, 证明E1AΔ基因能在PAEC中稳定表达, 且不影响细胞的正常生长, 并能抵抗肿瘤坏死因子-α (TNF-α )诱导的细胞凋亡. 报告基因分析表明, E1AΔ能抑制由TNF-α 诱导的NF-κB活性, 其抑制率为53%, 对NF-κB信号转导途径下游的一个重要炎症基因——E-选择素基因的表达抑制率达63%. 综上, E1AΔ基因的这些功能基本符合异种器官移植中克服DXR的要求, 为利用E1AΔ基因克服DXR的可行性提供了实验依据. 相似文献
18.
水稻半矮秆基因sd-g的精细定位 总被引:6,自引:3,他引:6
矮秆基因的发掘、研究和利用是水稻株型改良育种和植物生长发育分子生物学研究的重要基础. 利用新桂矮双矮与02428杂交产生的F2群体对sd-g进行了精细定位. sd-g基因首先被定位在水稻第5染色体上微卫星标记RM440和RM163之间, 遗传距离分别是0. 5和2.5 cM. 为了进一步精细定位sd-g基因, 利用已经公布的水稻基因组序列, 在sd-g基因附近区域寻找微卫星序列并发展新的标记, 在RM440和RM163之间发展了9个微卫星标记. sd-g基因被进一步定位在SSR5-1和SSR5-51之间, SSR5-1与sd-g之间距0. 1 cM, SSR5-51与sd-g之间相距0. 3 cM, 而SSR418与sd-g表现为共分离. 以此为基础, 构建覆盖sd-g基因区域的BAC重叠群, sd-g基因被定位在AC105319约85 kb的区段上, 这为sd-g基因的图位克隆奠定了基础. 相似文献
19.
农杆菌介导法获得转pac1基因小麦并表现对大麦黄矮病毒的抗性 总被引:7,自引:0,他引:7
自裂殖酵母中克隆得到pac1基因, 与GenBank中相关的核苷酸序列有99.3%的相似性. 编码蛋白质序列分析表明, 其具有RNaseⅢ结构域和双链RNA结合结构域. 体外活性测定表明, 以pET-5a系统在大肠杆菌中表达的pac1产物能够降解dsRNA. 将pac1导入双元载体pBI121, 以培养7~10 d的小麦幼胚为受体材料, 利用农杆菌株LBA4404对小麦品种陇鉴127进行转化, 获得了41株G418抗性植株, 经点杂交(dot blot)、RT-PCR和nptⅡELISA检测证实, 其中25株整合有外源基因并能正常表达. 对这25株转基因小麦进行大麦黄矮病毒的抗性鉴定表明, 有12株表现低度抗性, 表现为低接毒量时无症状, 接毒量提高时发病且严重; 有12株表现中度抗性, 表现为低接毒量时无症状, 接毒量提高时局部有不严重症状; 有1株表现高度抗性, 两种情况下均无症状. 抗性实验结果表明了pac1介导的抗性具有剂量效应的特点. 相似文献
20.
水稻xa5基因是具有重要研究和育种价值的隐性广谱抗白叶枯病基因. 利用水稻品系IR24及其近等基因系IRBB5(含xa5基因)杂交组合, 构建了含4892个单株的F2定位群体. 同时, 利用与xa5连锁的RFLP标记筛查含xa5基因的水稻抗性品系IRBB56的BAC文库, 构建了一个覆盖目标基因位点的长约213 kb的跨叠克隆群. 根据国际水稻基因组和中国超级杂交稻基因组序列, 以及跨叠克隆群的部分亚克隆测序, 设计了一系列SSLP和CAPS标记对目标基因进行精细遗传定位. xa5基因定位在2个CAPS标记K5和T4之间且与T2共分离, 标记K5和T4之间的遗传距离为0.3 cM, 物理距离约为24 kb. 对xa5基因所在的24 kb片段DNA序列进行基因预测, 揭示出可能编码ABC转运蛋白和转录因子TFIIA小亚基的2个基因. 对这一区段及其编码基因的功能研究将阐明xa5抗白叶枯病的分子机制. 相似文献