首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work,LiBH_4–20 wt%PP composite was prepared by ball-milling with as-synthesized hierarchical pyrolysis polyaniline(PP)and LiBH_4,and the hydrogen sorption performance as well as catalytic mechanism of the composite was studied.It is found that the onset desorption temperature of the composite decreases to 75°C,almost 235°C lower than that of the milled LiBH_4.Moreover,the composite could release 4.1 wt%H_2and rehydrogenate a total of 4.4 wt%H_2when the temperature raiseds up to 400°C,showing an outstanding reversibility,which even 3.9 wt%H_2can be kept after five cycles.Through scanning electron microscopy(SEM)observation and X-ray diffraction(XRD)analysis,we found that the PP surface forms some nanoholes after hydrogenation-dehydrogenation cycles,which leads to the confinement of some LiBH_4in the PP nanoporous structure,therefore,the hydrogen sorption kinetics and reversibility are significantly enhanced.In addition,we also found the oxygenic groups of the PP can react with LiBH_4forming LiBO_2and Li_3BO_3,where the containing Li–B–O bonds loaded in the porous structure of the PP catalyze the hydrogenation reaction of LiBH_4.  相似文献   

2.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

3.
A porous Co_3O_4 with a particle size of 1–3 μm was successfully prepared by heating Co-based metal organic frameworks MOF-74(Co) up to 500 °C in air atmospheric conditions. The as-prepared porous Co_3O_4 significantly reduced the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system and improved the purity of the released hydrogen. The LiBH_4-2LiNH_2-0.05/3Co_3O_4 sample started to release hydrogen at 140 °C and released hydrogen levels of approximately 9.7 wt% at 225 °C. The end temperature for hydrogen release was lowered by 125 °C relative to that of the pristine sample. Structural analyses revealed that the as-prepared porous Co_3O_4 is in-situ reduced to metallic Co, which functions as an active catalyst, reducing the kinetic barriers and lowering the dehydrogenation temperatures of the LiBH_4-2LiNH_2 system. More importantly, the porous Co_3O_4-containing sample exhibited partially improved reversibility for hydrogen storage in the LiBH_4-2LiNH_2 system.  相似文献   

4.
The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by dtrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550℃. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the caldnation temperature increasing from 550 to 750℃. After 100 cycles, the discharge capacity of the sample calcined at 750℃ is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.  相似文献   

5.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

6.
The acetone-sensing properties of the undoped and Pd doped perovskite-type oxides NdFeO3 were investigated from room temperature to 400°C. The perovskite-type NdFeO3 was synthesized by a sol-gel method, and the dopants Pd with the content from 1wt% to 5wt% were implanted into NdFeO3 nanoparticles by thermal diffusion. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques show that NdFeO3 is an orthorhombic structure with the average particle size of about 40 nm. A giant acetone-sensing response of 675.7 is observed when the Pd content in NdFeO3 powders is about 3wt%. The response and recovery time of the sensor to the 5×10−4 acetone gas are 16 and 1 s, respectively. At the same time, it performs a good selectivity to acetone gas and may be a new promising material candidate for the acetone-sensor development.  相似文献   

7.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

8.
The optimizations geometries and interaction energy corrected by BSSE of the complexes between C4H4Y (Y=O, S) and CHiLi have been calculated at the B3LYP/6-311++G^** and MP2/6-311++G^** levels. Three complexes were obtained. Abnormally, the calculations showed that all the C10--Li14 bond lengths increased obviously but the blue-shift of C10-Li14 stretching frequency occurred after formed complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy corrections of complexes I-III is -45.757, -35.700 and -39.107 kJ·mol^-1, respectively. The analyses on the combining interaction with the atom-in-molecules theory (AIM) also showed that a relatively strong lithium bond interaction presented in furan homologues C4H4Y-LiCH3 systems. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the complex I is formed with n-σ type lithium bond interaction between C4H40 and LiCH3, complex II is formed with TT-s type lithium bond interaction between C4H4O and LiCH3, and complex III is formed with TT-s and n-s type lithium bond interactions between C4H4S and LiCH3, respectively.  相似文献   

9.
The giant magnetocaloric effect Gd5Si2Ge2 alloy was prepared with 99wt% low purity commercial Gd. Powder XRD and magnetic measurements showed that the Gd5Si2Ge2 alloy annealed at 1200℃ for 1h had a significant magnetic- crystallographic first order phase transition at about 270 K. The maximal magnetic entropy change is 17.55 J· kg^-1· K^-1 under a magnetic field change of 0-5 T. The distinct increase of magnetic entropy change belongs to the first-order phase transition from the orthorhombic Gd5Si4-type to the monoclinic Gd5Si2Ge2-type after high temperature heat-treatment.  相似文献   

10.
The ruthenium-substituted polyoxometallic acid H6 [Ru(H2O)FeW 11O39 ]·18H2O was synthesized by stepwise acidification and stepwise addition of solutions of the component elements, and an ion-exchange-cooling method. The product was characterized using inductively coupled plasma spectrometry (ICP), Infrared Spectroscopy (IR), Ultraviolet Spectroscopy (UV), and X-ray diffraction (XRD). The results show that this complex has the Keggin structure. The determination of the thermal stability and proton conductivi...  相似文献   

11.
Allsolid-statelithiumpolymerbatteriesmaybeoneofthebestchoicesforelectrochemicalpowersourceofthefuturecharacterizedbyitshighenergydensities,goodcyclability,reliabilityandsafety[1,2].PEO-LiXbasedpoly-merelectrolyteshadreceivedextensiveattention[4,5],foritspotentialcapabilitytobeusedascandidatematerialforthetraditionalliquidelectrolytes,sinceWrightetal.foundthatthecomplexofPEOandalkalinesaltshadtheabilityofionicconductivityin1973[3].ThegeneralconceptofthetransportofLi+inthepolymerelectrolytewa…  相似文献   

12.
A new process called ‘NO x reduction by coupling combustion with recycling flue gas (RCCRF)’ was proposed to decrease NO x emission during the iron ore sintering process. The simulation test of NO x reduction was performed over sintered ore and in the process of coke combustion. Experimentally, NO x reduction was also carried out by sintering pot test. For sintered ore, the amount of NO x emission is reduced by 15wt%–25wt% at 400–550°C using 2.0vol% H2 or 2.0vol% CO, or reduced by 10wt%–30wt% at 560–720°C using 0.15vol% NH3. NO x reduction is around 10wt% by coupling combustion of pyrolysis gas and coke, or around 16wt% by recycling flue gas into coke combustion. By RCCRF, the maximum NO x reduction ratio is about 23wt% in coke combustion experiment and over 40wt% in sintering pot test.  相似文献   

13.
A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air cal- cining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150-200℃, and then by washing with hydro- chloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400-500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180-200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.  相似文献   

14.
Ca0.6La0.2667TiO3 ceramics were prepared by conventional and microwave sintering techniques and their sinterability, microstructure, and microwave dielectric properties were investigated in detail for comparison. Densified Ca0.6La0.2667TiO3 ceramics were obtained by microwave sintering at 1350°C for 30 min and by conventional sintering at 1450°C for 4 h. An unusual phenomenon was found that some larger grains (grain size range: 8–10 μm) inclined to assemble in one area but some smaller ones (grain size range: 2–4 μm) inclined to gather in another area in the microwave sintered ceramics. The microwave dielectric properties of Ca0.6La0.2667TiO3 ceramics prepared by microwave sintering at 1350°C were as follows: dielectric constant (ɛ r) = 119.6, quality factor (Qf) = 17858.5 GHz, and temperature coefficient of resonant frequency (τ f) = 155.5 ppm/°C. In contrast, the microwave dielectric properties of the ceramics prepared by conventional sintering at 1450°C were ɛ r = 117.4, Qf = 13375 GHz, and τ f = 217.2 ppm/°C.  相似文献   

15.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

16.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

17.
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6·3H2O into the Na3PO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of K4(FeCN)6·3H2O increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275°C. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.  相似文献   

18.
The transient absorption spectrum technique was employed to investigate the cross-reaction mechanism of C6H5F-HNO2 aqueous solution irradiated at 355 nm. The characteristic and the kinetic parameters of transient species were also detected. Hydroxyl radical derived from the photolysis of HNO2 was added to monofluorobenzene with a second-order rate constant of (5.83±0.17)×10^9 L·mol^-1·s^-1 to form an adduct, C6H5F…OH, which was able to react with HNO2 as the main reaction pathway with a rate constant of (8.3±0.1)×10^7 L·mol^-1·s^-1. The C6F6…OH adduct can also be decayed by elimination of H2O to yield monofluorophenyl radical C6H4F-. By GC-MS technique, the final products were identified to be monofluorophenol, nitro-monofluorobenzene, nitro-monofluorophenol and para-fluorobiphenyl.  相似文献   

19.
A single host white emitting phosphor, CaLaGa3O7:Dy3+, was synthesized by chemical co-precipitation. Field emission scanning electron microscopy, X-ray diffraction, laser particle size analysis, and photoluminescence and cathodoluminescence spectra were used to investigate the structural and optical properties of the phosphor. The phosphor particles were composed of microspheres with a slight tendency to agglomerate, and an average diameter was of about 1.0 μm. The Dy3+ ions acted as luminescent centers, and substituted La3+ ions in the single crystal lattice of CaLaGa3O7 where they were located in Cs sites. Under excitation with ultraviolet light and a low voltage electron beam, the CaLaGa3O7:Dy3+ phosphor exhibited the characteristic emission of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions) with intense yellow emission at about 573 nm. The chromaticity coordinates for the phosphor were in the white region. The relevant luminescence mechanisms of the phosphor are investigated. This phosphor may be applied in both field emission displays and white light-emitting diodes.  相似文献   

20.
The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HCl, H2SO4, and H3PO4 acids were studied using AC and DC techniques. Impedance data reveal that the susceptibility to localized corrosion increases with increasing temperature. Potentiodynamic polarization curves reveal that the bulk glassy alloy is spontaneously passivated at all the investigated temperature in H2SO4 and H3PO4 solutions. A localized corrosion effect in HCl solution is clearly observed. The apparent activation energies in the regions of Tafel, active, and passive, as well as the enthalpies and entropies of the dissolution process were determined and discussed. The high apparent activation energy (Ea) value for H3PO4 solution in Tafel region is explained by the low aggressivity of PO43- ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号