首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The restricted gene expression pattern of a differentiated cell can be reversed by fusion of the somatic cell with a more developmentally potent cell type, such as an embryonic stem (ES) cell. During this reprogramming process, somatic cells obtain most of the characteristics of pluripotent cells. Reactivation of an inactive X chromosome (Xi) is an important epigenetic marker confirming the pluripotent reprogramming of somatic cells. Female somatic cells contain one active X chromosome (Xa) and one Xi, and following the fusion of these cells with male ES cells, the Xi becomes activated, resulting in XaXaXaY fusion hybrid cells. To monitor Xi reactivation, transgenic female neural stem cells (fNSCs) carrying a green fluorescent protein (GFP) reporter gene expressed on the Xa (X-GFP), but not on the Xi, were used for reprogramming. XaXiGFP NSCs, whose GFP reporter was silenced, were fused with HM1 ES cells (XY) to induce pluripotent reprogramming. The XiGFP of NSCs were found to be activated on day 4 post-fusion, indicating reactivation of the Xi. Hybrid cells showed pluripotent cell-specific characteristics cells including inactivation of the NSC marker Nestin, DNA demethylation of Oct4, DNA methylation of Nestin, and reactivation of the Xi. Following differentiation of the (GFP-positive) hybrid cells through embryoid body formation, the proportion of GFP-negative cells was found to be approximately 26?%, indicating that there was random inactivation of one of the three Xas. Here, we showed that the Xi of somatic cells is reprogrammed to the Xa state and that cellular differentiation occurs randomly, i.e., regardless of the Xa or Xi state, indicating that the memory of the Xi of somatic cells has been erased and reset to the ground state (i.e., inner cell mass-like state), indicating that random X-chromosome inactivation occurs upon differentiation.  相似文献   

2.
3.
Sex determination is essential for the sexual reproduction to generate the next generation by the formation of functional male or female gametes. In mammals, primary sex determination is commenced by the presence or absence of the Y chromosome, which controls the fate of the gonadal primordium. The somatic precursor of gonads, the genital ridge is formed at the mid-gestation stage and gives rise to one of two organs, a testis or an ovary. The fate of the genital ridge, which is governed by the differentiation of somatic cells into Sertoli cells in the testes or granulosa cells in the ovaries, further determines the sex of an individual and their germ cells. Mutation studies in human patients with disorders of sex development and mouse models have revealed factors that are involved in mammalian sex determination. In most of mammals, a single genetic trigger, the Y-linked gene Sry (sex determination region on Y chromosome), regulates testicular differentiation. Despite identification of Sry in 1990, precise mechanisms underlying the sex determination of bipotential genital ridges are still largely unknown. Here, we review the recent progress that has provided new insights into the mechanisms underlying genital ridge formation as well as the regulation of Sry expression and its functions in male sex determination of mice.  相似文献   

4.
Resetting epigenetic signatures to induce somatic cell reprogramming   总被引:1,自引:0,他引:1  
Somatic cell reprogramming consists of the induction of a complex sequence of events that results in the modification of the developmental state of the cell. It is now routinely possible to reprogram fully differentiated cells back to pluripotent cells, and to transdifferentiate cells of a given type in cells of a totally different lineage origin. However, whether there are key initiating factors that are distinct from those that control stem-cell renewal and that can initiate the reprogramming process remains unknown. In contrast, what is clear is that, by modifying the epigenetic status of a cell, its reprogramming can be initiated. Here, we review the current literature that shows how the plasticity of a cell can be modulated by modifying its epigenetic status, and we discuss how epigenetic barriers can be removed, to induce an efficient reprogramming process.  相似文献   

5.
A number of studies have demonstrated that transplantation of neural precursor cells (NPCs) promotes functional recovery after spinal cord injury (SCI). However, the NPCs had been mostly harvested from embryonic stem cells or fetal tissue, raising the ethical concern. Yamanaka and his colleagues established induced pluripotent stem cells (iPSCs) which could be generated from somatic cells, and this innovative development has made rapid progression in the field of SCI regeneration. We and other groups succeeded in producing NPCs from iPSCs, and demonstrated beneficial effects after transplantation for animal models of SCI. In particular, efficacy of human iPSC–NPCs in non-human primate SCI models fostered momentum of clinical application for SCI patients. At the same time, however, artificial induction methods in iPSC technology created alternative issues including genetic and epigenetic abnormalities, and tumorigenicity after transplantation. To overcome these problems, it is critically important to select origins of somatic cells, use integration-free system during transfection of reprogramming factors, and thoroughly investigate the characteristics of iPSC–NPCs with respect to quality management. Moreover, since most of the previous studies have focused on subacute phase of SCI, establishment of effective NPC transplantation should be evaluated for chronic phase hereafter. Our group is currently preparing clinical-grade human iPSC–NPCs, and will move forward toward clinical study for subacute SCI patients soon in the near future.  相似文献   

6.
7.
Protein homeostasis, or proteostasis, is essential for cell function, development, and organismal viability. The composition of the proteome is adjusted to the specific requirements of a particular cell type and status. Moreover, multiple metabolic and environmental conditions challenge the integrity of the proteome. To maintain the quality of the proteome, the proteostasis network monitors proteins from their synthesis through their degradation. Whereas somatic stem cells lose their ability to maintain proteostasis with age, immortal pluripotent stem cells exhibit a stringent proteostasis network associated with their biological function and intrinsic characteristics. Moreover, growing evidence indicates that enhanced proteostasis mechanisms play a central role in immortality and cell fate decisions of pluripotent stem cells. Here, we will review new insights into the melding fields of proteostasis and pluripotency and their implications for the understanding of organismal development and survival.  相似文献   

8.
OCT4 is considered a main regulator of embryonic stem cell pluripotency and self renewal capacity. It was shown that relevant OCT4 expression only occurs in cells of embryonic pluripotent nature. However, several recent publications claimed to have demonstrated OCT4 expression in human somatic tumor cells, human adult stem or progenitor cells and differentiated cells.We analysed 42 human tumor cell lines from 13 entities and human bone marrowderived mesenchymal stem cells (MSC). To validate OCT4 expression we used germ cell tumor (GCT) cell lines, derived xenografts and GCT samples. Analysis by RT-PCR, western blotting, immunocytochemistry and immunohistochemistry was performed. With exception of typical embryonal carcinoma cells, we did not observe reliable OCT4 expression in somatic tumor cell lines and MSC. We suggest that a high level of expression of the OCT4 protein together with its nuclear localization still remains a reliable and definitive feature of cells with embryonic pluripotent nature. Received 30 September 2008; received after revision 05 November 2008; accepted 10 November 2008  相似文献   

9.
Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.  相似文献   

10.
11.
12.
13.
The influence of cell proliferation on the condensation of the X chromosome was observed in vitro in human fibroblasts with 49 XXXXX karyotype. The frequency of cells with four Barr-bodies is low during the logarithmic growth phase and increases to 80% when the cells are becoming confluent or, independently of cell contact, when cell growth is arrested in a medium with low serum content. The condensation of th X chromosomes is reversible when the cells start growing again in medium with a higher serum content.  相似文献   

14.
The stably transfected rat cell line HR24 expressing high levels of the inducible human hsp70 and its parental cell line Rat-1 were used for in vivo studies to analyse the role of hsp70 during thermal protein denaturation and the subsequent renaturation. In order to monitor denaturation and renaturation of a cellular protein in vivo, both cell lines were transiently transfected with firefly luciferase (Luc). The continuous monitoring of Luc activity during and after heat stress allowed a detailed analysis of the inactivation and reactivation kinetics in cells grown in monolayers. The aim of these studies was to distinguish a protective effect of increased hsp70 levels during heat shock-induced protein inactivation from a stimulation of reactivation. In this paper we show that in cells that are stably transfected with hsp70, thermal Luc inactivation decreased, and subsequent reactivation yielded higher activity levels, compared with the parental cells. The difference in early inactivation kinetics observed in the two cell lines suggests an immediate effect of the presence of an extra amount of hsp70 on enzyme inactivation. Using different mathematical models, the heat-induced inactivation and reactivation kinetics was compared with simulations of denaturation and renaturation. It is concluded that the model in which it is assumed that hsp70 is able to interact with partially denatured proteins, which did not yet lose their enzymatic activity, most optimally explains the experimental observations. Received 2 December 1998; received after revision 19 February 1999; accepted 18 March 1999  相似文献   

15.
Sex determination and gametogenesis are key processes in human reproduction, and any defect can lead to infertility. We describe here the molecular mechanisms of male sex determination and testis formation; defects in sex determination lead to a female phenotype despite the presence of a Y chromosome, more rarely to a male phenotype with XX chromosomes, or to intersex phenotypes. Interestingly, these phenotypes are often associated with other developmental malformations. In testis, spermatozoa are produced from renewable stem cells in a complex differentiation process called spermatogenesis. Gene expression during spermatogenesis differs to a surprising degree from gene expression in somatic cells, and we discuss here mechanistic differences and their effect on the differentiation process and male fertility.Received 23 January 2004; received after revision 30 March 2004; accepted 6 April 2004  相似文献   

16.
17.
Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号