首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以聚乙二醇(PEG)为辅助模板剂和碳源,以廉价的三价铁为铁源,采用喷雾干燥-碳热还原法制备了LiFePO4/C正极材料,并对该材料的微观结构及PEG添加量、焙烧温度等对材料结构和性能的影响进行了表征和研究.结果表明:制得的LiFePO4/C材料呈介孔结构,具有漂亮的差级球状形貌、高的比表面积和容量、优异的循环性;PEG...  相似文献   

2.
使用廉价的三价铁Fe2O3为铁源,以蔗糖为还原剂和导电剂,通过热还原法制备了LiFePO4/C复合材料。运用TGA-DAT曲线对反应机制进行了分析,利用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电和循环伏安测试等测试手段对不同覆碳量合成材料进行了表征和电化学性能检测。结果表明:所合成的LiFePO4均为纯相,其中含碳1.07%的样品0.2C倍率下的放电比容量为143.32 mAh/g。  相似文献   

3.
以不同平均分子量的聚乙二醇(PEG)组合体系为纳米结构控制剂和碳源,采用旋转蒸干法制备了LiFePO4/C复合材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电测试等手段对其晶体结构、形貌与电化学性能进行了表征。结果表明:不同的PEG组合体系对LiFePO4的晶体尺寸和颗粒形貌具有调控...  相似文献   

4.
利用磷化工生产过程的副产物Fe-P废渣为原材料,合成磷酸铁锂正极材料,针对其电化学性能不佳的情况,通过包覆不同含量的碳及不同的碳源来进行优化.实验结果表明,当碳含量为5 wt%且碳源为葡萄糖时,磷酸铁锂材料能表现出最好的电化学性能.本结果为磷酸铁锂正极材料的改性提供了一种新的思路.  相似文献   

5.
基于碳热还原法制备碳化硅的原理,针对该方法合成成本高,反应时间长,所用设备昂贵,合成条件苛刻等缺陷.利用微波的良好加热性能,采用微波辅助碳热还原法制取碳化硅粉体.经实验表明,最优条件为:锌粉作催化剂,碳硅原子比为4:1,微波功率800W,微波时间30min.该方法制备的碳化硅为3C—SiC晶型,晶粒粒径相对较小.微波辅助碳热还原法具有成本低、产量大、反应时间短、尺寸相对较小,具有工业化应用的前景.  相似文献   

6.
以FePO4.2H2O,LiOH.H2O为原料,分别以蔗糖、PVA、柠檬酸及三者按一定比例混合做为包覆碳的碳源,经碳热还原法合成得到LiFePO4/C复合正极材料。采用TG/DTA、XRD、SEM对前驱体及产物进行表征。以放电比容量为考察样品电化学性能的指标。实验发现,以蔗糖、柠檬酸、PVA按一定比例混合为碳源制得的LiFePO4/C复合材料电化学性能最好,在0.5,1,2,和5 C下首次充放电分别达到144.5,138.5,130.3和110.7 mAh/g,样品在5 C下经50次循环,基本无衰减。  相似文献   

7.
以氧化铝、碳黑、硝酸铝、葡萄糖为原料,采用2种不同的工艺制备了氧化铝-碳黑和硝酸铝-葡萄糖2种体系的原料混合物,研究了原料的种类对氮化铝粉末合成反应的影响.研究结果表明以氧化铝和碳黑为原料时,氮化反应过程中只出现了α-Al2O3和AlN相,该原料体系反应速度较慢,在温度为1650 ℃时氮化3~5 h才能实现完全氮化;而以硝酸铝和葡萄糖为原料时,氮化反应过程中相变较复杂,出现了γ-Al2O3,α-Al2O3,AlON和AlN相,该原料体系反应速度较快,1550 ℃时仅需1~2 h便可实现完全氮化;不同的起始原料不仅可以影响反应速度,还对粉末的粒度有较大影响,以氧化铝和碳黑为原料合成的氮化铝粉末的平均粒度约为0.7 μm;而以硝酸铝和葡萄糖为原料合成的氮化铝粉末的平均粒度约为0.1 μm.  相似文献   

8.
聚苯胺在LiFePO_4/C正极中的双重功能   总被引:1,自引:0,他引:1  
锂离子电池(LIB)中正极活性材料的导电率σ都很低,要减小正极的极化程度,增大活性材料的比充、放电容量和充、放电电流密度,最有效方法之一是选用高导电率的导电剂,与粘结剂混合在一起在正极中组成良好的导电网络.测试结果表明:聚苯胺(PAn)的导电率(σPAn=18.39 S/cm)大于正极中常用导电剂乙炔黑(AB)的导电率(σAB=7.77 S/cm).以PAn作为正极活性材料,不添加其他导电剂,对其进行恒电流充、放电试验(电流密度I=15 mA/g)时,其第3循环的比放电容量D3=60.8 mAh/g,充、放电效率η3=94.56%,试验结果表明:PAn在正极中兼有导电剂和活性材料的功能.以LiFePO4/C含碳复合材料作为正极活性材料,以PAn替代AB作为导电剂进行了恒电流充、放电试验,在电流密度为15 mA/g,30 mA/g,45 mA/g,60 mA/g,75 mA/g,90 mA/g和120 mA/g时,LiFePO4/C的比充、放电容量都增加了,表明正极的极化程度减小了.正极在经过较大电流密度(120 mA/g)充、放电后,再以小电流密度(15 mA/g)进行充、放电时,比充、放电容量几乎没有变化,表明经大电流(120 mA/g)充、放电后LiFePO4/C的贮锂结构没有变化.  相似文献   

9.
本文综述了采用碳热还原法由天然原料制备β─sialon的工艺参数,并对不同研究者得到的有关数据进行分析和比较。可以认为,有些参数的最佳值已有了比较一致的结论,有些参数还有待进一步的研究。  相似文献   

10.
以FePO4.2H2O,Li2CO3和蔗糖为原料,采用碳热还原法合成LiFePO4/C材料.高温合成时采用木炭粉代替惰性气体保护以降低成本,对样品进行X射线衍射分析(XRD)、扫描电子显微镜(SEM)测试和电化学性能分析.结果表明:当合成温度为650℃时合成的材料具有较好的电化学性能,0.1倍率下首次放电比容量为153.0 mA.h/g,30次充放电循环后容量保持率为95%,具有良好的循环性能.  相似文献   

11.
低温合成LiFePO4/C正极材料及其电化学性能   总被引:2,自引:0,他引:2  
以FeSO4·7H2O,NH4H2PO4和H2O2为初始原料,通过液相沉淀制得前驱体FePO4·2H2O,然后通过碳热还原得到LiFePO4/C.X射线衍射和扫描电镜分析结果表明将FePO4·2H2O,Li2CO3与炭黑球磨2 h后再在Ar气气氛、500℃下煅烧10 h能得到无其他杂相的LiFePO4/C材料,反应剩余的碳黑分布在LiFePO4颗粒之间,阻碍LiFePO4颗粒团聚,并有利于提高其电子导电率;制得的LiFePO4/C的粒径为0.3~0.4μm,且具有良好的循环性能;以0.1C倍率电流放电的首次放电比容量为134.2 mA·h/g,1C倍率下的放电比容量为104 mA·h/g.  相似文献   

12.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

13.
以Fe(NO3)3·9H2O为铁源,LiH2PO4为磷源和锂源,PEG400(平均分子量为400的聚乙二醇)作为碳源和结构调控剂,采用喷雾干燥一高温烧结法合成了球形LiFePO4/C。考察了喷雾干燥过程中,母液浓度、进风温度和进料速率对LiFePO4/c样品形貌、振实密度和电化学性能的影响。结果表明:随母液浓度的降低,...  相似文献   

14.
以Fe3+为铁源,乙炔黑为碳源,采用溶胶-凝胶法合成出了多孔的LiFePO4/C,并用XRD、SEM、CV及恒流充放电测试对材料进行了研究和表征.该材料以1C倍率充放电时,首次放电容量达139.5 mAh/g,循环50周后,仍有132.0 mAh/g的容量.这是由于合成的多孔材料可以与电解液有更充分的接触,从而提高了材料的利用率.  相似文献   

15.
采用溶胶凝胶法对原料进行了混合,在氮气保护下利用固相反应烧成了LiFePO4/C复合材料.XRD衍射分析表明,烧成温度和碳源引入量对LiFePO4/C的结晶度有较大的影响,在650~700 ℃范围内烧成的LiFePO4/C结晶完整;当碳源引入量超过20%时,LiFePO4/C衍射峰强度下降.SEM电镜观察到,烧成的LiFePO4/C晶粒细小,大小均匀,晶粒尺寸为100 nm左右.以烧成的LiFePO4/C复合材料作为正极材料进行充放电测试,发现碳源对首次放电容量有较大的影响,分别以乙炔黑、蔗糖和葡萄糖作为碳源时,0.1 C倍率下首次放电容量分别为120,135,162 mA·h/g.对以葡萄糖为碳源烧成的LiFePO4/C复合材料进行放电倍率测试,研究结果表明,该复合材料具有优异的大电流充放电性能.在1 C和3 C高倍率下首次放电容量为0.1 C倍率下放电容量的90%和80%.  相似文献   

16.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

17.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

18.
纯电动汽车磷酸铁锂电池组放电效率模型   总被引:2,自引:0,他引:2  
以320V/100A·h磷酸铁锂动力电池组为研究对象,在电动汽车动力电池性能测试试验台上对电池组容量效率、开路电压及电压性效率等特性参数进行了测试.采用二次多项式构建了电池组放电效率模型,描述放电效率与电流及电池荷电状态之间的关系.利用实车测试的电池组放电电流对建立的模型进行了验证,模型的放电效率计算值与实测值的最大相对误差为0.8%,建立的模型是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号