首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用热重法(TG)测定了槲皮素和芦丁的TG-DTG曲线.结果表明:槲皮素的DTG曲线有一个明显的失重峰,峰顶温度为349℃,失重率为33.32%.芦丁的DTG曲线有三个失重峰,在278℃的失重峰最为明显,失重率为29.71%.用TG-DTG法对两者在非等温条件下进行热分解动力学研究,把从TG-DTG曲线中取得的数据和30个不同的方程采用Achar微分法和Madhusudanan-Krishnan-Ninan(MKN)积分法对其进行非等温分解动力学研究,得到动力学参数(表观化学能E和频率因子A)和分解动力学机理及方程.得出结论:槲皮素和芦丁动力学方程均为da/dt=A exp(-E/RT)3/2(1-α)4/3[1(1-α)1/3-1]-1,其分解机理符合三维扩散机理Three-dimensional,3D.二者的表现化学能分别为93.63和107.86kJ·mol-1,ln A 分别是25.80和39.57 s-1.  相似文献   

2.
不同气氛下氟醚橡胶热分解动力学的对比研究   总被引:1,自引:0,他引:1  
利用热失重分析方法(TGA),研究了氟醚橡胶生胶在空气和氮气中的热分解规律,并探讨了五种升温速率下的热分解动力学.应用Flynn-Wall-Ozawa法计算获得了其热解过程的动力学参数,并利用Popescu法推断得到了热解过程的反应机理函数.研究结果表明:氟醚橡胶生胶只呈现出一个主要的热失重峰;升温速率越大,热分解温度越高;氮气中更稳定且氧气对其热分解有一定的促进作用;空气中的热分解活化能平均值为172.5kJ/mol,氮气中的为260.9kJ/mol;两种气氛下,热解过程均不能由单一的机理函数来描述;空气中,340℃~370℃阶段机理符合相边界反应,球形对称,370℃~380℃阶段机理函数符合Ginstling-Brounshtein(G-B)方程,380℃~400℃阶段符合Zhuralev(Zh)方程;氮气中,400℃~430℃阶段机理函数符合Ginstling-Brounshtein(G-B)方程,430℃~460℃阶段机理符合相边界反应,球形对称.  相似文献   

3.
为了研究氧化铜(CuO)及其含量对硝酸铵(AN)相转变过程以及热分解过程的影响,采用TG-DSC-MS联用技术研究了四种不同CuO含量的AN的热性能。TG-DSC结果表明,纯AN的TG热分解曲线仅为一个失重台阶,对应DSC曲线只有一个分解吸热峰。在AN中加入CuO后,ANⅣ→Ⅲ的相转变峰消失,TG曲线出现两个失重台阶,对应DSC曲线中出现一个分解吸热峰和一个分解放热峰,随着CuO含量的增加分解吸热峰逐渐变小,分解放热峰的峰温逐渐降低,当CuO含量为40%时,AN的熔融吸热峰和分解吸热峰消失。MS结果显示,CuO改变了AN的热分解机理,使其在熔融之前分解产生H2O、NH3和N2O。活化能结果显示,CuO的含量对AN放热分解过程的活化能没有影响。  相似文献   

4.
运用TG-DSC联用技术研究了磷矿石的热分解过程,得到了磷矿石在不同粒度、不同升温速率下的TG-DSC曲线.结果显示磷矿石在401 100℃范围内可分为4次失重阶段;随着粒度的减小,TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在6001 100℃范围内可分为4次失重阶段;随着粒度的减小,TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在600800℃吸热分解过程的活化能,平均值为202.80 kJ/mol,为磷矿石的资源化利用提供依据.  相似文献   

5.
以废弃D-101型大孔吸附树脂为对照,以Fe^3+作催化剂,采用热重法(TG)研究了铁负载量分别为0.5%、3.0%、5.0%和8.0%的废弃D-101型大孔吸附树脂的热分解特性.实验结果表明:铁负载量为5%以下时有利于树脂在600℃以下热分解,其中铁负载量为0.5%的树脂在600℃以下失重率最大,且催化剂的用量最小,为最佳催化浓度.用TG.DTG法对5个不同铁负载量的树脂在非等温条件下进行热分解动力学研究,把从TG.DTG曲线中取得的数据和30个不同的方程采用Achar微分法和Madhusudanan-Krishnan-Ninan(MKN)积分法对其进行非等温分解动力学研究,得到动力学参数(表观化学能E和指前因子A)和分解动力学机理及方程.得出结论:未负载铁的树脂和铁负载量分别为3.O%、8.0%的树脂的热分解动力学方程为doddti=Aexp(-E/RT)^1/3。(1-α)[-1n(1-α]^-2,铁负载量分别为0.5%和5.0%的树脂的热分解动力学方程为dα/dt=A exp(-E/RT)^2(1-α)^3/2,后者的分解符合Chemical reaction机理.  相似文献   

6.
安乃近的热分解过程和热分解非等温动力学   总被引:1,自引:0,他引:1  
采用TG-DTG技术研究了安乃近在静态空气气氛中的非等温热分解过程及其动力学,根据TG曲线并结合红外光谱技术确定了热分解过程中的中间产物及最终产物,运用微分法和积分法对热分解数据进行了分析,推断出了第1步反应的脱水瓜,其动力学方程为da/dt=Ae-^E/RT(1-a_);第2步应为二极反应,其动力学方程为:da/dt=Ae-^E/RT(1-a)2。  相似文献   

7.
采用TG-DTG技术研究了安乃近在静态空气气氛中的非等温热分解过程及其动力学,根据TG曲线并结合红外光谱技术确定了热分解过程中的中间产物及最终产物,运用微分法和积分法对热分析数据进行了分析,推断出第1步反应为脱水反应,其动力学方程为dα/dt=Ae-(E)/(RT)(1-α);第2步反应为二级反应,其动力学方程为dα/dt=Ae-(E)/(RT)(1-α)2.  相似文献   

8.
层状双金属氢氧化物的热分解及动力学研究   总被引:6,自引:0,他引:6  
研究层状双金属氢氧化物(LDH)的热分解过程对以其为前体制备双金属复合氧化物可提供理论指导。采用热重差热分析研究了镁铝摩尔比分别为2、3和4的LDH的热分解行为,并对热分解过程进行了动力学研究。采用红外光谱以及X射线衍射研究了Mg2Al-LDH在不同焙烧温度热分解产物的结构特点,结果表明层间碳酸根阴离子的脱除温度范围宽,约从250℃到700℃,但主要是在330~400℃之间进行的;LDH热分解过程脱除层间阴离子和层板羟基脱水的同时,伴随新相生成,500~700℃条件下,LDH的分解过程比较完全,形成了双金属氧化物。  相似文献   

9.
精制后的聚己内酯用三氯甲烷为溶剂制成溶剂膜.以调制式热重分析(TGA)为聚己内酯热裂解的研究方法,并使用核磁共振(NMR)和傅里叶变换红外光谱(FTIR)分析其热裂解后所得的产物.TGA的结果表明,聚己内酯的热裂解过程分为两步,第一步的分解温度为205~295℃,失重率为7.0%;第二步分解温度为311-374℃,失重率为88%.结果同时得到了聚己内酯热分解的活化能、指前因子和速率比等热分解动力学常数,分别为第一步80kJ/mol,5min-1和0.3,第二步分别为146kJ/mol,11min-1和0.47.裂解后的产物经过NMR和FTIR分析,发现不但有高分子的聚已内酯,也有呋喃、取代环丙烷以及不饱和的羧酸等小分子化合物产生.  相似文献   

10.
TG—DSC联用技术在磷矿石热分解上的应用   总被引:1,自引:0,他引:1  
运用TG—DSC联用技术研究了磷矿石的热分解过程,得到了磷矿石在不同粒度、不同升温速率下的TG—DSC曲线.结果显示磷矿石在40~1100℃范围内可分为4次失重阶段;随着粒度的减小。TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在600~800℃吸热分解过程的活化能,平均值为202.80kJ/mol,为磷矿石的资源化利用提供依据.  相似文献   

11.
聚乳酸/纳米石墨薄片复合材料的热分解动力学   总被引:1,自引:0,他引:1  
采用溶液浇铸法制得聚乳酸/纳米石墨薄片复合材料.以TG/DTG为手段,研究了该纳米复合材料在氮气气氛中的热分解变化,利用Flynn-Wall-Ozawa(FWO)方程和Friedman方程对其进行了动力学分析.结果表明,纳米石墨薄片对聚乳酸热分解的初期过程影响比较明显,当失重百分率为2%时,聚乳酸热分解温度最高提高16.3℃;当添加纳米石墨薄片含量为5%时,纳米石墨薄片能提高聚乳酸的热分解活化能,两种方程处理的结果具有一致性,对活化能的影响也主要体现在热分解的初始阶段.  相似文献   

12.
不同农业生物质废弃物的热解特性及动力学对比   总被引:1,自引:0,他引:1  
为了充分利用农业生物质废弃物进行热解气化,以玉米芯、花生壳、稻壳和稻秸为研究对象,以高纯氮气为载气,通过热重分析和质谱分析联用技术,考察了其热解过程的失重机制、热流变化规律、小分子可燃气体(CO,H_2和CH_4)的释放规律及综合热解特性.结果表明,生物质的热解失重主要发生在220~410℃,玉米芯在该区间的失重最高,占总失重的80%~90%;挥发分综合释放指数D:玉米芯稻秸稻壳花生壳,活化能:稻壳玉米芯稻秸花生壳,固体剩余物:稻壳花生壳稻秸玉米芯,总体上看,玉米芯和稻秸的热稳定性较差,而稻壳和花生壳的热稳定性较好;通过Coats-Redfern法计算得到了相应的活化能和频率因子,计算结果与热重试验基本一致.  相似文献   

13.
以Ce(NO3)3.6H2O为铈源,(NH4)2 CO3.H2O为沉淀剂,加入少量PEG4000作为分散剂,采用化学沉淀法并经水洗、超声波醇洗,70℃干燥后得到CeO2的前驱体Ce2(CO3)3.H2 O。对Ce2(CO3)3.H2 O样品运用差示/热重分析(DSC/TG)和X射线衍射(XRD)方法进行其热分解过程研究,并通过多重速率扫描法记录样品在不同升温速率下的DSC/TG曲线,采用Kissinger-Akahira-Sunose(KAS)法和Coats-Redfern法进一步研究Ce2(CO3)3.H2 O的热分解动力学。研究结果表明:Ce2(CO3)3.H2 O热分解反应过程分2步进行,主要反应阶段的反应动力学参数是:反应活化能为105.51 kJ/mol,反应级数为2,频率因子为3.61;由此推断出可能的Ce2(CO3)3.H2 O热分解机理函数为Anti-Jander方程,受三维扩散机制控制。  相似文献   

14.
聚碳酸亚丙酯可降解复合材料的制备与性能   总被引:2,自引:0,他引:2  
为提高PPC的性能,通过溶液共混法实现聚碳酸亚丙酯(PPC)与聚乙二醇(PEG)的共混.利用核磁共振(1H-NMR)、傅立叶红外光谱(FTIR)、X射线衍射(XRD)、差示扫描量热(DSC)、热重分析(TG)研究了共混物复合材料的性能.实验结果表明聚合物之间为简单的物理共混,没有发生化学反应,相容性较好;复合材料的玻璃化转变温度和热分解温度最高分别达到63℃和254℃,比纯PPC提高了41℃和29℃;复合材料的亲水性随着PEG组分的增加而增大,是PPC的23~29倍;复合材料溶液降解性能最多比PPC提高9倍,复合材料90天生物降解失重率比PPC提高4~6倍.  相似文献   

15.
根据热分析原理,采用Coats-Redfern计算方法,在非等温条件下,设计了由DTA-TG测定固体热分解动力学常数的实验  相似文献   

16.
合成了 Ni( C10 H8 O5 N2)·2 H2 O,用元素分析、红外光谱、热重及差热分析对该配合物进行了表征,并对其热分解过程进行了研究,运用 Achar 法和 Coats- Redfern 法,推断出该配合物第三步热分解的非等温动力学方程.  相似文献   

17.
以CoCl2.6H2O和(NH4)3PO4.3H2O为原料,在适量表面活性剂聚乙二醇-400的存在下,先在室温下研磨反应混合物进行固相反应,然后将反应混合物在80℃下保温陈化4h,接着用水洗去混合物中可溶性的无机盐,然后在110℃下烘干2h,得到(NH4)3CoPO4.H2O晶体材料。用XRD,IR,SEM及TG/DTA对产物进行表征。采用热重差热法(TG/DTA)分析研究该产物的热分解过程。结果表明,(NH4)3CoPO4.H2O在105~800℃有2个显著的失重平台,这2个失重过程机理函数所对应的活化能、频率因子(LnA)及热分解机理机理函数分别为:(a)E=97.83kJ/mol,lnA=23.26s-1,[ln(1-a)];(b)E=87.36kJ/mol,lnA=15.60s-1,1-(1-a)1/2。  相似文献   

18.
采用热重-质谱联用(TG-MS)研究了氮气气氛中花生壳在不同升温速率(5,10和20℃/min)下的热解行为,分析得到了花生壳热裂解过程产生的小分子气相产物(CO2,CH4,H2,CO)随温度和升温速率变化的释放规律.结果表明:花生壳热裂解过程分为四个阶段,升温速率越大,花生壳热解的失重温度区间越宽,最大热解速率峰越陡峭.应用Flynn-Wall-Ozawa法得出花生壳热裂解过程不同转化率(0.2~0.8)下的活化能在57.3~88.6 k J/mol范围内.结合Achar微分法和Coats-Redfern积分法确定了该反应过程的机理函数表达式,将30种常用机理函数一一代入得出花生壳热裂解机理的最概然函数为球形对称的三维扩散Jander方程,反应级数为2级.  相似文献   

19.
用半固相反应法合成了苯甲酸铜,用热重分析法(TG、DTG)研究了它在氮气气氛中的热分解过程,并用X-射线粉末衍射进行结构表征.苯甲酸铜的分解过程分二步进行,第一步失重23.7%;第二步失重29.0%,主要产物有二苯甲酮、联苯酰、氧化铜等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号