首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为充分利用磷渣和粉煤灰两种工业废渣生产高性能胶凝材料,研究了不同磷渣/粉煤灰配合比的碱-磷渣-粉煤灰胶凝材料的性能.结果表明:碱-磷渣-粉煤灰胶凝材料的凝结时间正常,在掺量为0~30%(质量分数)范围内,随着粉煤灰掺量的增加,碱-磷渣-粉煤灰的凝结时间略有延长.与普通硅酸盐水泥相比,碱-磷渣胶凝材料的抗压强度较高而抗折强度相对较低;掺加粉煤灰后碱-磷渣胶凝材料的抗压强度降低,但抗折强度提高.碱-磷渣胶凝材料的抗冻性和耐蚀性均优于普通硅酸盐水泥,但其干缩较大,用部分粉煤灰取代磷渣粉可一定程度减小干缩.  相似文献   

2.
以自制超早强剂与普通硅酸盐水泥为试验对象,采用常规工艺技术,制备出的快凝快硬高强混凝土6h抗压强度10 MPa,抗折强度1.5 MPa,1d抗压强度大于40 MPa,抗折强度达到5 MPa,28d抗压强度80MPa,抗折强度10 MPa,且180d强度有明显增长.使用XRD和TG-DSC等测试手段对水化试样进行分析,结果表明:超早强剂的掺入加速了硅酸盐水泥水化,促进早期钙矾石晶体生成,以及Ca(OH)2向钙矾石转化,从而促进早期强度发展,尤其促进6h到1d的水化硬化.  相似文献   

3.
随着大型工程结构的飞速发展,高强混凝土是现代混凝土的一个重要发展方向.采用铝酸盐水泥、硅酸盐水泥和石膏作为胶凝材料配制了快硬、早高强微膨胀砂浆和混凝土.早高强砂浆的1、3、7 d抗压强度和抗折强度分别为37、59、72 MPa和8.4、11.3、13.2 MPa.早高强混凝土的1、3、7 d抗压强度和抗折强度分别为27、65、70 MPa和2.5、6.8、9.9 MPa.利用一种预置爆室的抗爆实验方式,对所配制的早高强混凝土和普通混凝土的抗爆性能进行对比研究.实验结果表明:早高强混凝土制作的爆室,在20 g TNT药量作用下,爆室结构保持完好,实现密封要求;而相同条件下,普通混凝土制作的爆室结构被严重破坏.  相似文献   

4.
运用助磨剂改性钢渣复合胶凝材料,研究改性钢渣复合胶凝材料粉体比表面积变化;研究复合胶凝材料抗折强度、抗压强度等力学性能;并分析材料3d、28 d水化矿物.结果显示S58助磨剂能够改善材料活性,使得胶凝材料28 d抗压强度达到42.5 MPa硅酸盐水泥标准;SEM-EDS显示水化初期矿物以氢氧化钙和钙矾石为主,水化28 d,材料较之迷化,生成大量的C-S-H凝胶,复合水泥强度大幅提高.  相似文献   

5.
目的研究铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰四元复合体系超早强灌浆料的流动度、凝结时间和力学性能,找出超早强灌浆料的最佳配比.方法采用行星式搅拌机将原材料搅拌均匀,利用跳桌测试流动度,贯入阻力法测定凝结时间,水泥压力试验机测试力学强度,混凝土收缩膨胀仪测试膨胀性能,分析砂胶比为1.0的微观结构.结果该体系辅以多种外加剂,采用高胶砂比可以保证初始流动度大于325 mm,30 min流动度大于280 mm,2 h抗压强度达34.80 MPa,24 h抗折达13.82 MPa,28 d抗压强度大于99.90 MPa,56 d抗压强度大于28 d抗压强度.早期SEM微观结构显示晶形生长良好,结构致密.结论铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰按一定的比例复配,具有良好的施工和易性和力学性能.  相似文献   

6.
利用矿渣-钢渣基胶凝材料(简称冶金渣胶凝材料)代替传统充填料中使用的水泥作为胶结剂,掺入含铅尾砂制成胶结充填料试样,通过流动度和抗压强度表征其工作性能,通过Pb2+浸出质量浓度表征其固化效果,通过X射线衍射、红外光谱、差示扫描量热法等手段分析其物相组成,并与P·I 42.5硅酸盐水泥作对比.在相同条件下,冶金渣胶凝材料试样的流动度平均高出水泥50 mm,且28 d强度符合一般矿山3.0 MPa的要求.冶金渣胶凝材料试样28 d龄期铅浸出质量浓度低于地下水环境质量标准Ⅲ类水0.05 mg·L-1的限值,而水泥为0.1 mg·L-1左右.冶金渣固化铅性能优于水泥的机理在于冶金渣胶凝材料水化生成更多钙矾石.此外,冶金渣胶凝材料水化产物可能存在类沸石相,更有利于吸附固化Pb2+.  相似文献   

7.
为了比较普通硅酸盐水泥、掺加矿渣的硅酸盐水泥和碱激发水泥3种胶凝材料对铬渣的稳定固定化效果,采用硫酸硝酸法、TCLP毒性浸出法以及半动态浸出法对固定化试件总铬和六价铬的浸出规律进行实验研究.结果表明,铬渣的掺入对普通硅酸盐水泥水化反应产生负面影响,当铬渣掺量从20%增加到45%时,试件抗压强度由50.4 MPa下降到25.8 MPa;浸出液中总铬和六价铬的浓度随着铬渣掺量的增加而增加.用矿渣代替部分普通硅酸盐水泥,能够提高对铬渣中铬的固定效果,当矿渣掺量为45%时,固定效果最佳.碱矿渣水泥对低掺量的铬渣有较好的固定效果,但当铬渣掺量超过35%时,浸出液中铬的浓度大幅度增加.  相似文献   

8.
快凝高强胶凝材料是现代建筑预制装配化,模块化和抢修抢建工程中应用的重要材料.以普通硅酸盐水泥为实验对象,以硫铝酸盐水泥、硅灰和粉煤灰为改性剂,以三者对普通硅酸盐水泥的取代率为响应因素,对普通硅酸盐水泥—硫铝酸盐水泥—硅灰—粉煤灰四元体系进行响应曲面优化.以四元体系28 d抗压强度为响应值,建立四元体系抗压强度预测模型.基于预测模型,确定复合胶凝材料体系的最优配比,并研究复合胶凝材料28 d抗压强度在各响应因素交互作用下的变化规律.在此基础上,对所得预测优配比进行凝结时间与抗压强度实验验证,并进行SEM微观分析.结果表明,硫铝酸盐水泥、硅灰和粉煤灰的取代率分别为12.84%、9.28%和12.11%时,预测配比28 d抗压强度最大,硫铝酸盐水泥、硅灰、粉煤灰之间存在明显的交互作用;与空白样相比,工作性满足要求时,优配比初终凝时间分别缩短了84.32%和82.20%;1 d和28 d抗压强度分别提高了47.07%和29.71%.研究结果可为快凝、早强和高强复合胶凝体系研究提供参考.  相似文献   

9.
为了研究粉煤灰基地聚物胶凝材料的组成对其性能的影响,对C类粉煤灰分别掺入少量(质量分数小于17%)偏高岭土和矿渣粉后,进行了两种地聚物胶砂试块的力学性能试验研究,并与相同配比、相同制作养护条件下的普通硅酸盐水泥胶砂试块进行了比较.试验结果表明:纯粉煤灰(C类)地聚物胶凝材料强度低于P.O 42.5水泥;当外掺料质量分数大于17%时,粉煤灰基地聚物胶凝材料强度超过同龄期(14 d)的水泥;掺入矿渣粉的粉煤灰基地聚物抗压强度高于掺入等量偏高岭土的粉煤灰基地聚物.  相似文献   

10.
以水玻璃和Na OH作为激发剂,矿渣微粉作为胶凝材料,硫铝酸钙氧化钙膨胀剂作为掺合料,制备碱矿渣混凝土基本力学性能试验标准试件,开展其立方体抗压强度、劈裂抗拉强度、弯拉强度、弹性模量和泊松比基本力学性能试验研究.结果表明:碱矿渣混凝土表现出良好的早强性能,SEM微观分析显示骨料与浆体界面间未见明显过渡区,膨胀剂的掺入可以提高碱矿渣混凝土的早期(1 d、3 d)强度,降低后期(28 d)强度;同强度等级的碱矿渣混凝土的抗拉韧性要优于普通硅酸盐混凝土,弯拉强度、弹性模量和泊松比与普通硅酸盐混凝土相当;膨胀剂的掺入对弯拉强度有较大幅度的降低;已有弹性模量各建议计算式计算结果中与试验值最为接近的为中国规范.  相似文献   

11.
矿渣—粉煤灰基高性能混凝土专用胶凝材料   总被引:1,自引:1,他引:1  
通过优化配比组分、粒级设计和使用外加剂,制备出一种高掺量矿渣、粉煤灰且使用水泥熟料较少的矿渣--粉煤灰基高性能混凝土专用胶凝材料.研究了物料粉磨方式、石膏掺量、矿渣与粉煤灰的掺量及比例对复合高性能胶凝材料体系强度的影响,并通过X射线衍射(XRD)和扫描电镜(SEM)微观分析手段观察其微观结构和水化产物,阐明了复合胶凝材料活性与级配协同优化效应.复合胶凝材料胶砂水胶比为0.36时具有较好的流动度,胶砂试块养护28d抗压强度可以达到58.9MPa,抗折强度达到14.2MPa,并具有良好的抗硫酸盐侵蚀性能,配制的混凝土具有良好的抗碳化性能.  相似文献   

12.
目的探讨硫酸钠、三乙醇胺和早强组分A复合对超早强灌浆料终凝时间、抗折强度和抗压强度等性能与结构的影响.为实际工程中的应用提供理论依据.方法对石英砂的级配进行了较系统的研究.采用行星式搅拌机将原材料搅拌均匀,用贯入阻力法测定凝结时间,用水泥压力试验机测试力学强度,用电子显微镜分析砂胶比1.0的微观结构.结果单掺0.05%三乙醇胺,0.8%硫酸钠或0.1%早强组分A,超早强灌浆料的各项指标基本满足要求.将硫酸钠、三乙醇胺和早强组分A按合理比例复合;石英砂的最佳质量级配为5∶5∶2,且砂率范围1.0~1.5;超早强灌浆料的终凝时间为50~60 min,初始流动度大于320 mm,0.5 h流动度大于280 mm,2 h抗压强度达35.6 MPa,1 d抗折大于12 MPa,28 d抗压强度大于90 MPa.结论采用砂的最佳级配,将硫酸钠、三乙醇胺和早强组分A复合掺入后,胶凝材料的水化早期的水化程度的增幅最大,后期保持稳定增长.提出复合早强剂最佳配比和砂的最佳级配.  相似文献   

13.
目的研究不同原材料掺量对复合胶凝材料试件强度的影响,选择最佳配合比制备一种新型的复合胶凝材料取代普通硅酸盐水泥.方法根据不同配合比参数,制备相应的复合胶凝材料试件,测试其抗折强度和抗压强度,研究轻烧镁粉掺量、硫酸镁溶液掺量、硫酸铝溶液掺量以及磷酸掺量对试件强度的影响.结果硫酸镁溶液质量分数不变时,试件的强度随轻烧镁粉掺量的增加而提高.轻烧镁粉与硫酸镁的质量比固定时,试件的强度随硫酸镁溶液浓度的降低而减小,且m(Mg O)∶m(Mg SO4)固定值为4.6时,试件的强度取得最大值.m(Mg O)∶m(Mg SO4)∶m(H2O)为4.6∶1∶3.7,硫酸铝溶液掺量、磷酸掺量分别为轻烧镁粉掺量的1.5%、1.8%时,复合胶凝材料试件28 d时的抗折强度、抗压强度取得最大值,分别为6.8 MPa、51.4 M Pa.结论制备的镁质粉煤灰复合胶凝材料的强度可达到同等42.5级普通硅酸盐水泥的强度要求.  相似文献   

14.
摸索一种提高矿渣复合胶凝材料抗压与抗折强度的方法,以便解决矿渣复合胶凝材料的强度不足问题.通过抗压强度、抗折强度、SEM电镜分析和EDS能谱分析等一系列实验,研究掺入NaCl的SM剂的抗压与抗折强度及其微观结构.强度试验结果表明,NaCl的掺入改善了SM剂的抗压与抗折强度性能,使N-SM剂的强度可以达到32.5级矿渣硅酸盐水泥的标准.EDS试验结果证明,NaCl中的Cl-与矿渣复合胶凝材料进行了水化反应,并生成了新的水化产物片状晶体和针棒状晶体3CaO·Al2O3·(0.5CaCl2·0.5CaSO4)·12H2O.与此同时,Na+被释放出形成NaOH,为矿渣的水化提供了更强的碱性环境,可能是N-SM剂较SM剂强度高的原因之一.  相似文献   

15.
高性能水泥基灌浆料试验研究   总被引:2,自引:0,他引:2  
利用硫铝酸盐水泥、粉煤灰、砂、减水剂等配制高流动性硫铝酸盐水泥基灌浆材料(SAGM).采用均匀性试验设计,并用灰色关联度软件计算机分析试验.试验表明:1d、3d抗压强度分别达到48MPa、62MPa;1d、3d抗折强度分别达到9.3MPa、10MPa,展现出良好的力学性能;1d膨胀率为 0.038%,属于微膨胀,可避免因收缩引起的表面裂微.满足自流平灌浆料技术要求.利用SEM、EDS等测试手段进行微观分析,发现水化1d就有大量凝胶和针柱状钙矾石生成,得出该灌浆料具有快硬早强特点的原因.  相似文献   

16.
以纯碳酸钙、贝壳和石灰石为混合材,探讨掺量变化对硅酸盐水泥性能的影响.试验表明:硅酸盐水泥掺入质量分数为5%~15%的贝壳混合材后,水泥标准稠度用水量减少.3 d、7 d抗折强度高于普通硅酸盐水泥,28 d抗折强度先增后减.28 d抗压强度损失率为石灰石-硅酸盐水泥>贝壳-硅酸盐水泥>纯碳酸钙-硅酸盐水泥.贝壳混合材最佳掺量为10%,此时减水效果最好.早期强度高,28 d抗压强度损失率最小.贝壳化学组成和微观结构使其具有颗粒形态效应、化学反应活性和微细集料填充效应,可成为石灰石混合材的良好替代品.  相似文献   

17.
将尾矿砂以不同比例代替天然砂,研究其对水泥胶砂性能的影响。试验结果表明,尾矿砂的掺入能够满足水泥胶砂流动度和强度的要求,与天然砂相比,掺加尾矿砂可以提高水泥胶砂的流动度,并使水泥胶砂3d抗折强度和抗压强度略有降低,但可以提高水泥胶砂28d抗折强度和抗压强度。  相似文献   

18.
针对传统水泥基材料存在的强度较低、功能单一、成本偏高、工艺复杂、收缩较大等问题,以多种活性粉末为基础材料,通过单因素、正交试验及极差分析方法,确定了以强度性能为指标的高强水泥基材料质量配合比为水泥∶FA∶硅粉∶砂∶PP∶减水剂∶UEA:硅溶胶∶SBR∶水=100∶12∶6∶46.75∶0.08∶1.36∶3∶0.7∶1.3∶28.5,28d抗折/抗压强度达到12.4MPa/110.06MPa。在此基础上,通过干缩性能试验、DSC、SEM、XRD等方法,对高强水泥基材料性能进行了进一步分析。研究结果表明,掺入UEA的28d干缩率为0.176%,比0%UEA掺量的干缩值减少了0.077%;高强水泥基材料二次水化程度较低,但微观上堆积良好、结构致密均匀的超细粉胶凝体系保证了其高强、低脆的性能。  相似文献   

19.
研究硅酸钠分别与不同早强剂复掺对磷石膏基胶凝材料(PGF)性能的影响,并通过X线衍射仪(XRD)、扫描电子显微镜(SEM)测试产物微观结构。结果表明:掺入硅酸钠和早强剂明显提高了磷石膏基胶凝材料的抗压强度,当掺入0.5%二水氯化钙和3%硅酸钠时,7、28 d抗压强度分别较未掺外加剂时提高了46.53%和59.51%,线膨胀率分别较未掺外加剂硬化体降低50%,28 d软化系数提高28%,使得胶凝材料的性能得到很大提高。  相似文献   

20.
钢渣粉作为辅助胶凝材料用于水泥混凝土领域中的潜力很大,研究了钢渣粉自身的胶凝性及其粒径大小、掺入量对钢渣-水泥复合胶凝材料力学性能的影响。结果表明:钢渣粉的浆体强度和水化程度随其粒径减小而显著提高(28 d抗压强度4.0提高到21.5 MPa,Ca(OH)2含量从3.49%提高到5.48%,非蒸发水含量从4.8%提高到10.71%)。含30wt%钢渣粉的复合水泥3 d净浆和胶砂强度均表现出随微粉粒径的减小先增大,后降低(SC-40为拐点),而7 d、28 d强度随微粉粒径的减小而不断增大。钢渣粉的掺量对水泥浆体强度和水化程度的影响显著,水泥各龄期强度和水化程度均随钢渣粉掺量的增加而逐渐降低,且各龄期强度与钢渣粉含量均符合多项式函数关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号