首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knutti R  Flückiger J  Stocker TF  Timmermann A 《Nature》2004,430(7002):851-856
The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.  相似文献   

2.
Knorr G  Lohmann G 《Nature》2003,424(6948):532-536
During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.  相似文献   

3.
Rapid freshening of the deep North Atlantic Ocean over the past four decades   总被引:15,自引:0,他引:15  
Dickson B  Yashayaev I  Meincke J  Turrell B  Dye S  Holfort J 《Nature》2002,416(6883):832-837
The overflow and descent of cold, dense water from the sills of the Denmark Strait and the Faroe Shetland channel into the North Atlantic Ocean is the principal means of ventilating the deep oceans, and is therefore a key element of the global thermohaline circulation. Most computer simulations of the ocean system in a climate with increasing atmospheric greenhouse-gas concentrations predict a weakening thermohaline circulation in the North Atlantic as the subpolar seas become fresher and warmer, and it is assumed that this signal will be transferred to the deep ocean by the two overflows. From observations it has not been possible to detect whether the ocean's overturning circulation is changing, but recent evidence suggests that the transport over the sills may be slackening. Here we show, through the analysis of long hydrographic records, that the system of overflow and entrainment that ventilates the deep Atlantic has steadily changed over the past four decades. We find that these changes have already led to sustained and widespread freshening of the deep ocean.  相似文献   

4.
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.  相似文献   

5.
Schmittner A 《Nature》2005,434(7033):628-633
Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.  相似文献   

6.
Schmidt MW  Spero HJ  Lea DW 《Nature》2004,428(6979):160-163
Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the B?lling/Aller?d warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.  相似文献   

7.
Schmidt MW  Vautravers MJ  Spero HJ 《Nature》2006,443(7111):561-564
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.  相似文献   

8.
Partin JW  Cobb KM  Adkins JF  Clark B  Fernandez DP 《Nature》2007,449(7161):452-455
Models and palaeoclimate data suggest that the tropical Pacific climate system plays a key part in the mechanisms underlying orbital-scale and abrupt climate change. Atmospheric convection over the western tropical Pacific is a major source of heat and moisture to extratropical regions, and may therefore influence the global climate response to a variety of forcing factors. The response of tropical Pacific convection to changes in global climate boundary conditions, abrupt climate changes and radiative forcing remains uncertain, however. Here we present three absolutely dated oxygen isotope records from stalagmites in northern Borneo that reflect changes in west Pacific warm pool hydrology over the past 27,000 years. Our results suggest that convection over the western tropical Pacific weakened 18,000-20,000 years ago, as tropical Pacific and Antarctic temperatures began to rise during the early stages of deglaciation. Convective activity, as inferred from oxygen isotopes, reached a minimum during Heinrich event 1 (ref. 10), when the Atlantic meridional overturning circulation was weak, pointing to feedbacks between the strength of the overturning circulation and tropical Pacific hydrology. There is no evidence of the Younger Dryas event in the stalagmite records, however, suggesting that different mechanisms operated during these two abrupt deglacial climate events. During the Holocene epoch, convective activity appears to track changes in spring and autumn insolation, highlighting the sensitivity of tropical Pacific convection to external radiative forcing. Together, these findings demonstrate that the tropical Pacific hydrological cycle is sensitive to high-latitude climate processes in both hemispheres, as well as to external radiative forcing, and that it may have a central role in abrupt climate change events.  相似文献   

9.
The overshoot phenomenon of the Atlantic thermohaline circulation (THC) is a transient climate response to meltwater forcing and could induce intense climate change by increasing the magnitudes of Atlantic THC changes at the end of meltwater discharges. This phenomenon was formally presented with the successfully simulated Bolling-Allerod (BA) event in the first transient simulation of the last deglaciation with fully coupled model NCAR-CCSM3 (TraCE-21K). Currently, not all proxy records of Atlantic THC support the occurrence of the THC overshoot at BA. Commonly used THC proxy from Bermuda Rise (GGC5) does not exhibit THC overshoot at BA but other proxies such as TTR-451 at Eirik Drift do. How to interpret this regional discrepancy of proxy records is a key question for the validation of the Atlantic THC overshoot at BA. Here, we show that the vigor of deep circulation varies regionally during the Atlantic THC overshoot at BA in TraCE-21K simulation, and this regional discrepancy in the simulation is consistent with that in the marine sediment records in North Atlantic. The consistent model-proxy evidence supports the occurrence of Atlantic THC overshoot at BA.  相似文献   

10.
Many palaeoclimate records from the North Atlantic region show a pattern of rapid climate oscillations, the so-called Dansgaard-Oeschger events, with a quasi-periodicity of approximately 1,470 years for the late glacial period. Various hypotheses have been suggested to explain these rapid temperature shifts, including internal oscillations in the climate system and external forcing, possibly from the Sun. But whereas pronounced solar cycles of approximately 87 and approximately 210 years are well known, a approximately 1,470-year solar cycle has not been detected. Here we show that an intermediate-complexity climate model with glacial climate conditions simulates rapid climate shifts similar to the Dansgaard-Oeschger events with a spacing of 1,470 years when forced by periodic freshwater input into the North Atlantic Ocean in cycles of approximately 87 and approximately 210 years. We attribute the robust 1,470-year response time to the superposition of the two shorter cycles, together with strongly nonlinear dynamics and the long characteristic timescale of the thermohaline circulation. For Holocene conditions, similar events do not occur. We conclude that the glacial 1,470-year climate cycles could have been triggered by solar forcing despite the absence of a 1,470-year solar cycle.  相似文献   

11.
不同平均强度热盐环流的年代际波动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
基于美国国家大气研究中心的CCSM3(community climate system model version 3)模式,对淡水扰动试验下不同平均强度热盐环流(thermohline circulation,THC)的年代际波动特征及北大西洋气候响应特征进行研究。结果表明,百年以上尺度的THC变化对其年代际尺度波动产生显著影响,高平均强度下THC的年代际波动周期更长、更显著。对不同平均强度下北大西洋海、气要素与THC在年代际尺度上的相关分布进行分析,发现在高平均强度下,THC与海表温度(sea surface temperature,SST)的相关呈现为经向三核型分布,与海平面气压(sea lever pressure,SLP)的相关呈现为类NAO(North Atlantic oscillation)分布,而在低平均强度下,则不存在这2种模态分布;同时,在不同平均强度下,THC与各要素间的相关程度也不同,高平均强度下相关程度更高。  相似文献   

12.
Hall A  Stouffer RJ 《Nature》2001,409(6817):171-174
Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region.  相似文献   

13.
Response of the Atlantic thermohaline circulation (THC) to global warming is examined by using the climate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-toequator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmospheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.  相似文献   

14.
北大西洋热盐环流对温室气体浓度变化的响应   总被引:2,自引:0,他引:2  
利用海?气耦合模式模拟了北大西洋热盐环流对外强迫的平衡响应。大气中CO2浓度加倍后, 热盐环流强度将减弱约20%; 大气中CO2浓度减半后, 热盐环流将增强约13%。研究结果表明, 热盐环流对外强迫的响应有两个阶段: 瞬变阶段和平衡阶段。瞬变响应主要取决于局地海表热通量和淡水通量的变化, 平衡响应还与非局地热量输送和淡水输送过程有关, 两个过程作用相互竞争。在CO2加倍实验中, 与淡水输送相关联的正反馈作用更强, 导致热盐环流略有恢复; 在CO2减半实验中, 热量输送与淡水输送作用相抵, 热盐环流没有明显的恢复。此外, 海水密度与其温度的非线性关系导致CO2加倍和减半实验中热盐环流的响应大小是非对称的。  相似文献   

15.
The long-term integration with the Global Ocean-Atmosphere-Land System model of the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics(IAP), Chinese Academy of Sciences has been used in the investigations on the relationship between the thermohaline circulation and climate variability. The results show that the strength of the North Atlantic Thermohaline circulation (THC) is negatively correlated with the North Atlantic Oscillation (NAO). Based on this kind of relationship, and also the instrument-measured climate record such as air pressure and sea surface temperature, the activity of the thermohaline circulation during the 20th century has been evaluated. The inferred variations of the strength of the THC is that, during two multi-decadal periods of 1867–1903 and 1934–1972, the THC is estimated to have been running stronger, whereas during the two periods of 1904–1933 and 1973–1994, it appears to have been weaker.  相似文献   

16.
The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.  相似文献   

17.
Ocean circulation and climate during the past 120,000 years   总被引:22,自引:0,他引:22  
Rahmstorf S 《Nature》2002,419(6903):207-214
Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 degrees C and massive surges of icebergs into the North Atlantic Ocean --events that have occurred repeatedly during the last glacial cycle.  相似文献   

18.
由于全球气候变暖的一个负反馈机制——温盐环流的存在,使得气候在变暖过程中有可能出现突然变冷事件.地质历史时期气候突变事件的研究表明:这种潜在的突然变冷事件可能会持续几百年甚至上千年.加强对温盐环流强度变化的监测研究对于预测未来的气候变化,制定防灾减灾措施具有重要意义.  相似文献   

19.
The magnitude of heat and salt transfer between the Indian and Atlantic oceans through 'Agulhas leakage' is considered important for balancing the global thermohaline circulation. Increases or reductions of this leakage lead to strengthening or weakening of the Atlantic meridional overturning and associated variation of North Atlantic Deep Water formation. Here we show that modern Agulhas waters, which migrate into the south Atlantic Ocean in the form of an Agulhas ring, contain a characteristic assemblage of planktic foraminifera. We use this assemblage as a modern analogue to investigate the Agulhas leakage history over the past 550,000 years from a sediment record in the Cape basin. Our reconstruction indicates that Indian-Atlantic water exchange was highly variable: enhanced during present and past interglacials and largely reduced during glacial intervals. Coherent variability of Agulhas leakage with northern summer insolation suggests a teleconnection to the monsoon system. The onset of increased Agulhas leakage during late glacial conditions took place when glacial ice volume was maximal, suggesting a crucial role for Agulhas leakage in glacial terminations, timing of interhemispheric climate change and the resulting resumption of the Atlantic meridional overturning circulation.  相似文献   

20.
Hostetler SW  Bartlein PJ  Clark PU  Small EE  Solomon AM 《Nature》2000,405(6784):334-337
Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号