首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
两类Lagrange系统的周期解   总被引:6,自引:0,他引:6  
用极小作用原理研究了具有次可加位势或具有次线性非线性项的Lagrange系统的周期解,得到了存在性定理。  相似文献   

2.
利用临界点理论研究以下二阶系统{ii(t)+q(t)ǔ(t)=▽F(t,u(t)),u(0)-u(T)=ǔ(0)-eQ(T)ǔ(T)=0,a.e.t∈[0,T]的周期解的存在性。在非线性项F(t,x)=F1(t,x)+F2(x)满足假设(A)及F1(t,x),F2(x)分别满足一定有界性条件下,通过使用极小作用原理获得了一个新的存在性定理。  相似文献   

3.
研究了二阶Hamilton系统{(u)(t)=F(t,u(t)),a.e.t∈[O,T],u(O)-u(T)=u(O)-u(T)-O周期解的存在性问题,通过使用极小化原理,获得了周期解存在的一些充分性条件,所得结果改进了已有文献中的一些结果.  相似文献   

4.
Lagrange 系统周期解的多重性   总被引:3,自引:0,他引:3  
得到了具有无界而部分周期非线性项的Lagrange系统周期解的多重性结果。  相似文献   

5.
在非线性项有一部分是次线性的条件下,运用临界点理论中的极小作用原理,得到了非自治二阶哈密尔顿系统周期解的存在性.  相似文献   

6.
通过临界点理论中的极小作用原理,得到了一些关于非自治二阶离散哈密尔顿系统△^2 u(t-1 )=△↓F(t,u(t)) 任意t ∈Z 的解的存在与多解性结果.  相似文献   

7.
利用临界点理论,对一类对称自然Hamilton系统在位势函数为一阶可微等条件下,给出极小周期存在的结果。  相似文献   

8.
极小作用原理在二阶Hamilton系统中的应用   总被引:4,自引:2,他引:4  
综述了用极小作用原理得到的关于二阶Hamilton系统周期解存在性的有关结果。  相似文献   

9.
通过利用极小作用原理得到了二阶非自治 Hamilton 系统{ü(t)=(△)F(t,u(t))u(0)-u(T)=u(0)-u(t)=0 a.e.t∈[-T/2,T/2],在空间H'T={u:[-T/2,T/2]→RN|u绝对连续,u(-T/2)=u(T/2)且∈L2(-T/2,T/2;RN)}上存在偶函数和奇函数期解的条件.  相似文献   

10.
本文用变分法证明了一类次二次受迫的Lagrange系统周期解的存在性.  相似文献   

11.
利用最小作用原理研究2阶系统ü(t)-A(t)u(t)=▽F(t,u(t)),a.e.t∈[0,T]u(0)-u(T)=(u)(0)-(u)(T)=0,的周期解的存在性,在非线性项是次线性及A(t)是1个连续N阶对称矩阵的条件下得到了该系统的2个新的存在性定理.  相似文献   

12.
主要目的是研究以下二阶系统{ü(t)+q(t)u(t)-A(t)u(t)=▽F(t,u(t)),u(0)-u(T)=u(0)-u(T)=0,a.e.t∈[0,T]的周期解的存在性.在位势函数具有一定的有界性及A(t)是一个连续的N阶对称矩阵的条件下,通过使用最小作用原理获得了该系统的两个新的存在性定理.  相似文献   

13.
文章的主要目的是研究以下二阶系统{ü(t)+q(t)u·(t)=↓△F(t,u(t))u(0)-u(T)=u·(0)-e^Q(T)u·(T)=0,a.e.t∈[0,T]。在F(t,x)=F1(t,x)+F2(x)满足假设(A)及F1(t,x),F2(x)满足一些可解性条件下,通过使用最小作用原理获得了2个新的存在性定理。  相似文献   

14.
通过使用最小作用原理,对于具有次可加位势的非自治二阶系统,获得了一个周期解的存在性定理.  相似文献   

15.
文章的主要目的是研究一类二阶哈密顿系统的周期解的存在性。通过使用最小作用原理获得了一个新的存在性定理。  相似文献   

16.
研究非自治的二阶Hamilton系统:±u= F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=u(0)-u(T)=0的周期解.当位势函数是一个(λ,μ)次凸函数与一个次二次函数的和时,利用极小作用原理和鞍点定理得到了非平凡周期解存在的几个充分条件.更全面地讨论了含有(λ,μ)次凸位势的Hamilton系统的周期解,推广和补充了某些已知的结果.  相似文献   

17.
本文利用极小作用原理研究了二阶非自治Hamilton系统{ǚ(t)= F(t,u(t)),α,e,t∈[0,T]u(0)-u(T)-u(0)gu(T)=0周期解的存在性问题,获得了一些可解性条件。  相似文献   

18.
孟凤娟 《河南科学》2010,28(1):21-24
利用极小作用原理研究一类二阶哈密顿系统周期解的存在性,给出了周期解存在性的一些充分条件,总结改进了现有的一些结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号