共查询到16条相似文献,搜索用时 93 毫秒
1.
尺度不变特征变换(SIFT)是一种常用的特征提取算法,但它采用固定的阈值来筛选特征点,匹配效果不是很理想.文中针对SIFT对不同图像无自适应性的缺点,提出了一种新的计算自适应阈值的方法,即将中介真值程度(MMTD)和SIFT相结合,用MMTD改进SIFT算法能够避免为了选取合适的阈值而进行大量的实验.采用MMTD改进阈值来筛选图像中的特征点,再将特征点进行图像匹配.实验结果表明,匹配点的数量比采用传统的SIFT方法增加了约两倍,说明文中所提出的基于MMTD的SIFT特征提取算法是有效的. 相似文献
2.
原始SIFT算法采用不同参数的高斯核取差,是对图像空间性质的一种测量方法. 本文在光谱维度上取差,用光学系统在光谱维度上的差异作为图像空间性质的测量方法;传统SIFT方法及大量的改进方法只统计以特征点为中心的邻域范围内图像块的像素信息,文中将匹配过程分为2个步骤,首先利用邻域范围内的图像块像素信息进行粗匹配,然后选取排序后相似程度最高的4组匹配对作为基准匹配对,对特征点进行二次校验. 仿真结果表明文中的设计方式显著增加了检测到的特征点数量,有效剔除了错误匹配. 相似文献
3.
《华中科技大学学报(自然科学版)》2016,(4):32-36
针对SIFT(尺度不变特征变换)算法在特征向量计算和特征点配对时计算量大的问题,基于SIFT算法进行了相应的改进.首先用相位相关法粗略定位图像的重叠区域,对重叠区域进行特征兴趣点的提取,对提取出的点构造泰森多边形;然后将图像切分为4行和4列,分别在每个小区域内根据构造的泰森多边形找到4对匹配点对,算出相应的图像变换矩阵,结合8个变换矩阵计算两幅图像的变换关系,最后采用渐入渐出算法对图像进行融合.在特定区域内寻找定量的点对使得须配对的点对数量变少,从而提升了图像拼接的效率. 相似文献
4.
基于SIFT和小波变换的图像拼接算法 总被引:1,自引:0,他引:1
提出了一种基于尺度不变特征变换(SIFT)和小波变换的图像拼接算法,以提高室外复杂场景的图像拼接质量.利用SIFT算法提取基准图像(待匹配图像)和后续图像(与基准图像进行匹配的图像)的特征点,确定特征点的位置、尺度与方向;利用128维向量对特征点进行描述;利用最近邻法完成两幅图像特征点的匹配,确定重合区域;利用基于小波变换的多分辨率方法完成对图像的拼接.实验结果表明,该方法对亮度差异较大的图像拼接效果良好,适宜于室外复杂环境的图像拼接. 相似文献
5.
基于SIFT特征提取的高清晰岩心图像自动配准 总被引:3,自引:1,他引:2
提出了采用图像自动拼接技术获得高清晰高质量岩心扫描全景图.自动拼接的关键是特征点的提取与匹配.尺度不变特征变换算法具有伸缩、旋转、仿射不变性,并能够抗拒一定光照和视点的变化.提出把该算法用于岩心图像的特征提取,并采用欧式距离法进行特征匹配.实验结果表明,采用该算法大大提升了岩心图像拼接系统的自动化水平和准确度. 相似文献
6.
尺度不变特征变换(SIFT)算法是一种对旋转、尺度缩放和光照保持不变性的局部特征图像匹配算子,是公认的识别率最佳算法之一。而SIFT算法仅使用灰度信息,忽略颜色信息,当对彩色目标识别时,识别率降低。针对此问题,结合直方图保持良好的旋转、缩放、模糊不变性等特点,提出基于局部颜色直方图的SIFT特征描述算法(即CH-SIFT)。在SIFT算法关键点位置不仅生成梯度直方图特征描述,同时生成颜色直方图特征描述。在匹配时,首先使用梯度直方图特征描述对匹配对初次筛选,然后使用颜色直方图特征描述再次筛选,最后确定是否为满足条件的匹配对。实验对比表明,CH-SIFT算法具有识别率高和匹配时间短等优点,能够有效地实现彩色目标匹配。 相似文献
7.
为了减少图像拼接方法的计算复杂度,提出一种基于尺度不变特征变换(SIFT)特征矢量图的快速图像拼接方法.该方法首先结合相位相关算法,确定待拼接图像的重叠区域,限定SIFT特征点检测范围;然后考虑特征点的空间位置信息,构建SIFT特征矢量图像,以便在特征匹配时限制匹配点的搜索范围,快速获得匹配点对.实验结果表明,该方法减少了大量的不必要搜索,提高了图像拼接速度. 相似文献
8.
针对现有SIFT算法时间复杂度较高的问题,提出一种基于Hough变换及SIFT特征提取的图像匹配方法。首先,用Hough变换算法检测建筑物区域,以缩小检测与匹配的范围;然后,用SIFT算法在给定区域进行特征点检测与匹配;最后,提出一种两级排除错误匹配的方法,该算法对建筑物序列图像匹配具有光照强度、平移、旋转不变性。实验结果表明,该方法的匹配准确率至少高出比较方法9%。 相似文献
9.
针对现有的图像复制遮盖篡改检测算法需要某些先验信息、对后处理操作失效且计算量大等问题,借鉴图像匹配技术中的SIFT(scale invariant feature transform)特征匹配算法,首次提出将其用于检测复制遮盖的篡改操作.该方案首先计算出待鉴定图像的所有特征向量,然后进行特征向量集的划分与匹配.待鉴定图像的匹配点对用点与点之间连线标记.如果图像被复制篡改过,所标记的线段将明显集中于某两个区域之间.实验表明,SIFT应用于复制遮盖及各种后处理篡改操作,如旋转、缩放、亮度调整等,都有很好的检测和定位效果. 相似文献
10.
基于SIFT特征提取,本文提出了一种多尺度的图像检索算法,将一幅图像转化为多个特征的集合,再通过计算两幅图像特征向量间的欧氏距离进行比较得出结果进而实现图像检索功能。实验结果说明该算法具有尺度、平移、旋转不变性,可以进行良好应用。 相似文献
11.
SIFT算法研究内容概述 总被引:2,自引:0,他引:2
SIFT算法是目前立体匹配技术的研究热点,因其匹配能力较强,能处理两幅图像平移、旋转、仿射变换等情况下的匹配问题,甚至对于任意角度拍摄的图像也有较稳定的匹配能力。该算法目前的中文资料较少,基于此本文对其研究主要内容进行简单介绍并结合具体实验图像分析。 相似文献
12.
面向CPU+GPU异构计算的SIFT 总被引:1,自引:0,他引:1
依据图形处理器(GPU)计算特点和任务划分的特点,提出主从模型的CPU+GPU异构计算的处理模式.通过分析和定义问题中的并行化数据结构,描述计算任务到统一计算设备架构(CUDA)的映射机制,把问题或算法划分成多个子任务,并对划分的子任务给出合理的调度算法.结果表明,在GeForce GTX 285上实现的尺度不变特征变换(SIFT)并行算法相比CPU上的串行算法速度提升了近30倍. 相似文献
13.
全局结构化 SIFT描述子在图像匹配中的应用 总被引:2,自引:0,他引:2
为了克服传统SIFT描述子进行图像匹配时对噪声和图像灰度的非线性变换敏感的缺点,提出了一种全局结构化SIFT描述子及其生成方法.该方法将特征点矩形区域改为以特征点为中心向外扩散的同心圆区域,计算同心圆区域10个方向的曲率累积值,建立一个描述范围为特征点尺度函数的特征向量,对其实施排序操作,赋予完全旋转尺度不变,形成全局结构化SIFT描述子.采用欧氏距离为匹配度量函数应用于图像匹配.实验结果表明:这种全局、局部结构式信息联合的思想增强了算法对图像的光照、平移、旋转等变换的鲁棒性,匹配精度提升18%,极大地改善了匹配效果. 相似文献
14.
对尺度特征不变SIFT算法进行了研究。针对原算法中128维特征描述子在匹配过程中效率低的情况,提出64维特征描述子。该描述子增加了特征点邻域的统计范围,增强了特征点的特征信息,降低了特征描述子的维数;特征点匹配阶段,采用欧氏距离作为度量,采用基于BBF的Kd-树对特征点进行匹配,提高了匹配速率。实验表明,匹配速率提高了5%到15%,配准精度与原算法相近。 相似文献
15.
针对采用颜色或边缘等特征的目标跟踪算法所存在的跟踪效果不稳定的问题,提出了一种基于极线约束尺度不变特征变换(SIFT)和粒子滤波的目标跟踪方法.该方法采用SIFT特征向量构建目标模型,引入极线约束改善目标匹配精度,采用粒子滤波算法获得SIFT特征向量的候选目标模型,利用似然函数计算目标模型与候选目标模型间的相似性.实验结果表明,该方法可解决目标与背景颜色相似时的跟踪失败问题,且对目标外形与位姿发生变化具有较好的适应能力. 相似文献
16.
基于SIFT算子的图像匹配算法研究 总被引:4,自引:0,他引:4
针对目前基于SIFT(scale invariant feature transform)的图像匹配算法在匹配相似区域较多的可见光图像时,匹配约束条件单一,没有有效剔除误匹配点,误匹配率高的问题,提出一种匹配改进算法,针对128维SIFT特征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率. 实验结果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果. 与原算法相比,在保证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低10%~20%,对于小尺度的视角变换,误匹配率平均降低5%. 相似文献