首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
介质阻挡流光放电中的螺旋波与靶波   总被引:11,自引:11,他引:0  
采用双水电极实验装置,对大气压氩气介质阻挡放电中的靶波与螺旋波斑图进行了观察测量.实验发现靶波与螺旋波可以互相转变,且有2种不同的转变路径:靶波→单臂螺旋波→靶波→单臂螺旋波;靶波→单臂螺旋波→双臂螺旋波→靶波.  相似文献   

3.
4.
岩石的损伤软化对应力波传播的影响   总被引:3,自引:0,他引:3  
针对不含水干岩弹塑性变形的基本特征,考虑岩石的剪胀效应和软化效应,并根据岩石不同变形阶段的特点,给出了不同的屈服面形式和损伤演化方程,建立了岩石的弹塑性连续损伤本构模型.在此基础上研究了一维应变波在岩石介质中的传播规律,揭示了应力波在岩石类脆性损伤软化材料的传播过程中,损伤软化使得材料分为损伤演化区和完全破坏区,应力平台在两区交界面处产生凹陷.这一不稳定的凹陷在传播过程中逐渐消失,因而应力波传播在损伤的作用下经历了一个从不稳定到稳定的演化过程.  相似文献   

5.
对近十年来玻璃和陶瓷介质在极端冲击条件下的实验研究,破坏现象和物理模型进行了总结,重点分析了低于Hugoniot应弹性极限时玻璃介质中的玻破坏波现象和陶瓷听拉伸/压缩损伤过程,指出Rasorenov的表面微裂纹扩展和Clifton的相变机制在解释脆性材料破坏过程中的合理性及其不足之处,分析了Espinosa的微裂纹多面模型和Partom的自持续破坏波模型在模拟玻璃介质中的破坏波现象时存在的主要问题  相似文献   

6.
旋转长杆弹侵彻混凝土靶应力波传播特性研究   总被引:1,自引:0,他引:1  
利用动量定理和动量矩定理,建立了旋转长杆弹垂直侵彻混凝土时的运动微分方程,并对此微分方程进行了数值求解,讨论了撞击力和侵彻位移的时程特性。在此基础上,利用波动理论建立了纵波的波动方程和扭转波的波动方程。利用有限差分法对波动方程进行了数值求解,讨论了弹体内部应力波的传播特性,重点研究了初始旋转角速度对长杆弹内应力波传播特性的影响。  相似文献   

7.
根据动能定律和刚体平面运动微分方程,建立了圆锥杆倾斜侵彻半无限厚水泥靶时的动力学方程。对这些方程进行数值求解,求得侵彻时的轴向撞击力和横向撞击力,讨论了初始侵彻角度对轴向撞击力和横向撞击力的影响。在此基础上,建立了圆锥杆的波动方程,分别研究了正应力和剪应力在圆锥杆中的传播规律和分布规律。研究表明,初始侵彻角度对轴向撞击...  相似文献   

8.
研究了瞬态波在非均匀损伤混凝土介质中的传播,将连续非均匀损伤混凝土介质进行分层均匀损伤的近似处理,利用波谱系数传递矩阵和信号处理手段,计算了3种典型损伤模型对近似脉冲输入信号的时域响应.计算结果表明,由于损伤的存在,将导致响应波的波幅增大,波形畸变,损伤越大,这种增大和畸变的影响程度越明显.  相似文献   

9.
圆锥杆垂直侵彻半无限厚水泥靶时应力波传播特性研究   总被引:4,自引:0,他引:4  
根据动量定理和动能定律,建立了圆锥杆垂直侵彻半无限厚水泥靶时的动力学模型,并对所得到的这些非线性动力学方程进行数值求解,藉此分析了等效撞击力,进而根据牛顿第二定理建立了圆锥杆的波动方程,研究了应力波在圆锥杆中的传播特性和规律.  相似文献   

10.
为了研究材料在不同冲击载荷作用下的动态力学性能,需测量冲击载荷与时间的变化规律。根据介质中弹性应力波传播理论和胡克定律,采用了冲击载荷间接测量方法、研制了相应的测试系统。利用钢球作为加载体对该测试系统进行验证,并得到了相应的测试结果。通过理论计算和测试结果的对比分析得出,所提出的冲击载荷间接测量方法正确、研制的测量系统可靠,可为后期的测试装置研制提供有效依据。  相似文献   

11.
基于SOA的指挥控制系统体系结构和通用平台是以栅格网络为中心,这种扁平化结构能够满足及时有效配置资源和未来网络中心化作战需求,其中作战单元的分析和目标毁伤评估是指挥控制系统研究的关键。首先分析了目标毁伤评估体系,构建了目标毁伤评估模型,研究了目标毁伤效果评估方法,有利于指挥并控制作战单元的行动,保障作战任务的顺利完成.  相似文献   

12.
设计并制备了由活性材料内核(PTFE/AL)、高强度钢外壳组成的活性弹丸,基于25 mm口径弹道炮发射平台进行了该弹丸对混凝土靶的毁伤效应实验.实验结果表明:在941~1 679 m/s着速下,活性弹丸撞击混凝土靶后均发生了剧烈爆燃反应.从混凝土成坑效应结果可以看出,活性弹丸毁伤效果比同规格惰性材料内核(PTFE)弹丸有大幅提高.活性弹丸依靠自身动能与强度侵入混凝土靶体,侵入过程中活性材料内核在靶体内部爆炸并释放大量化学能,这种“侵爆耦合效应”是造成混凝土靶高效毁伤的主控机制.  相似文献   

13.
针对坦克发动机在爆炸成形弹丸(EFP)作用下的毁伤效应问题,对典型坦克发动机及其防护结构进行了结构等效设计,开展了不同着角下EFP对发动机等效靶的侵彻实验,并结合LS-DYNA软件分析了不同着角下EFP对防护板(钢质)的侵彻作用,获得了发动机等效靶的破孔尺寸、毁伤面积以及EFP穿靶后的剩余动能.研究结果表明:随着角的增大,钢靶的破坏面积增大,对发动机结构(铝箱)毁伤效果呈现减弱趋势;实验结果与仿真结果基本一致,验证了仿真的有效性;EFP对钢靶最大破坏尺寸随着角增大呈上升趋势,EFP贯穿钢靶后的剩余动能随着角增大呈下降趋势;当着角α ≥ 57°时,爆炸成形弹丸不能穿透钢靶,无法对铝箱造成毁伤.   相似文献   

14.
岩石、混凝土受颗粒冲击后接触损伤形貌的特征   总被引:2,自引:0,他引:2  
用自制的冲击球压装置研究了花岗岩、大理石、混凝土及砂浆在颗粒冲击下的压痕-冲击应力关系和接触损伤的规律,结果表明:花岗岩、大理石的压痕-冲击应力关系以线性为主,随着应力的提高材料发生突然断裂;混凝土和砂浆线性关系相对不明显,这在宏观形貌上表现为损伤区的形貌特点不同。对四种材料损伤形貌的微观分析表明:花岗岩、大理石受颗粒冲击后产生的损伤主要为拉应力导致的解理面、晶面的破坏以及裂纹沿相界面和孔隙的扩展,对其力学性能有较大的危害;混凝土和砂浆的损伤由过渡区开裂、骨料破裂和C-S-H的塑性滑移共同构成,对耐久性造成的隐患远大于对力学性能的影响。  相似文献   

15.
为预测坠物撞击饱和黏土海床上海底管道的损伤,建立了坠物撞击下饱和黏土海床与海底管道相互作用的动力有限元模型,结合海底管道实际工作条件的变化范围,分析坠物撞击能量、管道直径、壁厚、钢材等级、内压、海床土不排水抗剪强度6个参数对海底管道损伤的影响规律,将6个参数作为输入层参数,以管道损伤作为输出参数,将数值模拟结果作为训练样本,通过学习和训练构建形成了海底管道损伤预测的BP神经网络模型。研究结果表明:坠物撞击能量越大,管道损伤越大,管道损伤增长速率随坠物撞击能量的增大而趋缓;管道直径、壁厚、内压、管道屈服强度增加,管道损伤减小;饱和黏土海床不排水抗剪强度越大,管道损伤越大。建立的海底管道损伤BP神经网络预测模型,仅需要坠物撞击能量、管道直径、壁厚、钢材等级、内压和海床土不排水抗剪强度6个参数,模型简单、便捷,能够较好地预测饱和黏土海床海底管道受坠物撞击的损伤,数值算例涵盖了常见饱和黏土海床海底管道的工作条件,具有很好的适用性,为海底管道损伤预测提供了新思路。  相似文献   

16.
动能弹对装甲目标毁伤评估的等效靶模型   总被引:5,自引:0,他引:5  
该文讨论了对特定弹靶系统毁伤作用的等效问题。根据动能弹对装甲目标作用的毁伤破坏机理,提出了这一特定弹靶系统中装甲目标等效靶的建立方法。结合钨合金长杆弹毁伤某型坦克目标,讨论了如何利用等效靶模型进行目标毁伤评估。结果表明,运用等效方法进行目标毁伤评估是可行的。该文对进一步研究目标毁伤等效靶及等效模拟靶的建立问题具有借鉴意义。  相似文献   

17.
叙述了软X射线波段多层膜透射式起偏器和检偏器的设计原理,提出了设计准则,通过该准则设计的多层膜偏振元件能够同时满足具有较大的光通量和偏振度要求.同时还优化了不同膜厚比情况下软X射线多层膜偏振元件的性能,讨论了在多层膜制作过程中,由于表界面粗糙度和扩散的不同对元件性能的影响,这些工作为制作软X射线多层膜透射式起偏器和检偏器提供了设计基础。  相似文献   

18.
针对模式分类问题,给出了一种神经网络多层感知器数字电路硬件实现方法,该方法在硬件电路中不含有数字乘法器,从而有助于克服目前神经网络数字器件难以单片集成的缺限.采用该方法研制出了具体的硬件线路板,应用于一实际的分类问题,取得了良好的效果  相似文献   

19.
动能打击类非致命武器是最广泛应用的反恐装备,研究非致命弹与目标的作用过程并剖析致伤机理,对提升打击效能与安全性具有重要意义.本文借助高速摄影等试验手段,研究球形橡皮弹对生物目标及复合模拟靶标的作用过程,通过成像结果分析目标/靶标受弹过程的瞬时大变形效应,提出了钝击作用过程的水波效应、皮肤拉伸效应协同作用是造成生物目标皮损、苍白、红晕区形成的根本原因,并通过构建解析模型建立了致伤物理参数与典型生物创伤机制的关联.试验结果及数学模型为揭示动能类打击弹药致痛机理与非致命装备效能评估提供了参考.  相似文献   

20.
本文介绍了已研制成功的一种短直刃硬齿面滚刀的设计特点及性能,并与同类滚刀的加工误差及特性进行了比较,证明该刀具结构简单、易于制造、成本低廉而且加工精度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号