共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于自适应完备集合经验模态分解(CEEMDAN,complete ensemble empirical mode decomposition with adaptive noise)的自适应阈值去噪算法。含噪信号经CEEMDAN算法分解成若干个模态分量(IMF,intrinsic mode functions),根据样本熵理论,对IMF分量中高频分量自适应选取,根据噪声和有用信息与原始信号的相关性不同,对高频分量中的噪声系数定位,利用能量熵选取噪声主区间,用高频分量中噪声主区间的噪声系数方差作为阈值,对高频分量进行阈值去噪,进一步去除噪声,保留高频中的有用信息,最后将信噪分离的高频分量和低频分量重构。分别对合成和实际地震信号去噪处理,并与常规去噪算法进行对比。数据仿真和实验结果表明,在原始信号信噪比为0.5dB时,常规与改进算法去噪后信噪比分别为4.55dB和9.97dB,大幅提高信噪比,达到随机噪声压制的目的,实现了高频分量的自适应选取和高频分量中有用信息的再提取。 相似文献
2.
为解决天然气管道运行过程中采集到的泄漏声波信号含有大量噪声的问题, 通过研究小波、 经验模态分解、 变模态分解等常见去噪算法, 分析了泄漏声波信号的特点, 将改进小波阈值去噪和变模态分解去噪相结合, 提出了变模态分解-小波变换(VMD-Wavelet: Variable Mode Decomposition-Wavelet) 联合去噪算法。 利用该算法对典型信号进行去噪运算仿真, 结果表明, 该联合去噪算法性能优于常见算法。 最后, 将 VMD-Wavelet 联合去噪算法应用于实际采集的油气管道泄漏声波信号去噪处理, 研究发现, 该去噪算法对强背景噪声下的泄漏声波信号能取得很高的信噪比改善和很小的均方误差。 相似文献
3.
基于尺度噪声能量估计的自适应语音去噪算法 总被引:1,自引:0,他引:1
摘要: 针对语音增强技术中的信号去噪问题,提出了一种非线性小波自适应阈值去噪方法.该方法采用一个改进的阈值函数,克服了传统软、硬阈值函数的缺陷;在阈值选取规则中,引入尺度相关去噪法而自适应地选取尺度阈值,利用小波系数在空间尺度的相关性进行尺度噪声能量的估计,根据所得尺度噪声能量来选取对应尺度层中的最佳小波系数并作为该尺度的阈值;同时,应用该方法对不同强度噪声背景下的语音信号进行去噪.结果表明,其具有较好的降噪性能.关键词: 语音信号; 滤波; 小波变换; 噪声能量; 自适应阈值中图分类号: TN 912.3文献标志码: A 相似文献
4.
语音去噪技术是语音识别系统走向实用化的一个关键性难题.针对语音信号为非平稳信号的特点,提出了一种基于EEMD和ICA相结合的语音去噪方法,首先利用集合经验模态分解(EEMD)算法将含噪语音信号分解为若干个独立的固有模态函数(IMF),消除了经验模态分解(EMD)算法处理语音信号时产生的模态混迭现象;然后将固有模态函数通过改进的独立分量分析(ICA)算法分离出若干个有效的语音信号分量;最后对其进行语音重构,从而达到消除噪声干扰的目的.实验结果表明,该方法在输入信噪比为-10dB的汽车噪声条件下,可以将语音信号的信噪比提高到2.741 2 dB. 相似文献
5.
针对小波包频带能量分解和Hilbert-Huang变化在信号的去噪研究中的优势,对比2种方法在液压挖掘机反铲切削过程中振动信号去噪的准确度.以液压挖掘机工作装置的振动信号为例,利用小波包频带能量分解算法与Hilbert-Huang变化算法分别对振动信号进行重构.其中,Hilbert-Huang变换首先是对振动信号通过经验模态分解(empirical mode decomposition,EMD)得到IMF分量;然后,对IMF分量进行Hilbert谱分析,得到IMF分量的能量特征,选择有用的IMF分量进行信号重构,从而消除噪音信号的干扰.研究结果表明:与小波包频带能量分解方法相比, Hilbert-Huang变换的液压挖掘机反铲切削过程振动的重构信号更加接近真实信号. 相似文献
6.
基于自适应噪声完备集合经验模态分解(CEEMDAN)、布谷鸟算法(CS)和支持向量机(SVM)构建了CEEMDAN-CS-SVM混合风速预测模型,实现了黄土高原陇东区风电场月平均风速的准确预测.首先,采用CEEMDAN算法对收集到的风速时间序列进行去噪,以避免直接采用收集到的风速数据进行预测将导致较大误差的缺陷;其次,采用布谷鸟算法对SVM的惩罚系数和核函数半径进行优化,以克服SVM参数选择敏感的缺陷;最后,用构建的CEEMDAN-CS-SVM混合风速预测模型实现了黄土高原陇东区风电场月平均风速的预测.数值结果表明混合风速预测模型CEEMDAN-CS-SVM能够实现研究区域短期风速的准确预测,预测精度比混合模型DWT-SVM、EEMD-SVM、CEEMDAN-SVM、CS-SVM、DWT-CS-SVM、EEMD-CS-SVM及SVM的预测精度高. 相似文献
7.
为有效抑制噪声对地震数据的影响,根据地震信号的时频特性,提出了基于变分模态分解的相关能量熵阈值去噪方法。采用变分模态分解算法将地震信号分解为频率由高频到低频且具有一定带宽的模态分量,计算各模态分量与地震信号的规范化相关系数,实现对各模态分量中的有效信息和噪声的定位。将去除有效信息的各模态分量分成若干子区间,分别计算各子区间的噪声能量熵,选取能量熵最大区间的模态分量系数作为该分量的噪声方差获得该分量的阈值,再将经阈值处理后的各模态分量重构得到去噪信号。通过对合成地震模型和实际地震信号进行去噪处理,并与直接去除高频分量的变分模态分解去噪方法进行了对比,结果表明,该方法能在强噪声环境下更有效地提取地震信号中的有效成分,提高信噪比。 相似文献
8.
压制随机噪声是地震数据处理过程中的一个重要环节,目前大多数去噪技术都不同程度存在去噪效果差、易损伤有效信号等问题。利用经验模态分解可将信号自适应地分解为不同特征尺度固有模态函数的优点,及小波变换模极大值滤波方法对噪声的依赖性较小且适合于低信噪比信号去噪的优势,构造了一种经验模态分解与小波变换模极大值相结合的新的去噪算法,该算法很好地实现了地震有效信号与随机噪声的分离,有效提高了地震数据信噪比。将该算法应用于仿真实验和实际地震数据处理,结果都表明该方法明显优于常规经验模态分解去噪效果。 相似文献
9.
针对混合输电线路故障多、定位精度差等问题,提出一种基于改进的自适应噪声完备集合经验模态分解(CEEMDAN)和Teager-Kaiser能量算子相结合的混合三端输电线路故障测距方法。首先对输电线路故障电压信号使用新型相模变换进行解耦,以消除线路间的电磁耦合现象;然后利用改进的CEEMDAN和Teager-Kaiser能量算子对解耦后的故障电压信号进行分解,提取了故障初始行波到达检测点的时间,再根据故障时暂态电压行波零模分量和线模分量的故障特性,提出一种基于零模和线模时间差的故障分支判别方法;最后为解决无法得到行波波速精确值的问题,采用基于零模线模时间差的行波测距方法得到了精确的故障定位数据。基于仿真模型,对比改进CEEMDAN算法和传统CEEMDAN算法,验证所提改进算法的有效性。仿真结果表明,所提算法不受故障类型、过渡电阻、波速、时间不同步的影响,具有较高的测量精度。改进CEEMDAN算法能够有效改善故障信号经传统CEEMDAN算法分解后带来的随机性问题,具有较高的工程应用价值。 相似文献
10.
目前对于保持图像细节、滤除噪声,普遍采用空间域、频率域滤波.在空间域滤波,尽管能够有效地限制噪声,但是同时模糊了图像细节.因此,在频率域滤波的方法越来越引起关注.在小波频率域中,我们常常采用Donoho阈值方法处理小波系数来以此去除噪声,保留图像细节,然而该方法同时也一定程度上模糊了图像细节.小波变换具有良好的时、频局部化性能,图像经过多级小波变换得到不同分辨率的子图个数,各高频子图上的小波系数具有相似的能量统计分布特性.也就是说随着分解层数的增加,分辨率最低子图的小波系数范围最大,而高分辨率子图上大部分数值接近于0.因此,该文提出了一种新的基于能量分布特性的小波去噪算法(WCED). 相似文献
11.
针对管道信号特征提取困难,从而影响分类精度的问题,提出了一种将信号处理和智能算法相结合的管道信号检测方法。首先,利用CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)对信号分解,对分解获得的固有模态(IMFs:Intrinsic Mode Functions)使用相关系数法获取有效的模态分量并进行信号重构;其次,计算重构信号的Lempel-Ziv复杂度和裕度作为特征参数;最后,将获取的特征参数输入到海鸥优化算法(SOA:Seagull Optimization Algorithm)优化后的极限学习机(ELM:Extreme Learning Machine)进行分类,并用实验室数据进行验证。实验结果表明,与常规极限学习机(ELM)和遗传算法优化后的极限学习机GA-ELM(Extreme Learning Machine Optimized by Genetic Algorithm)相比,SOA-ELM模型能有效的识别管道信号类型,且具有较高的识别率和较快的诊断速度。 相似文献
12.
比较分析了小波变换去噪法和经验模态分解去噪法在心音信号去噪中的优点和缺点,并且结合它们的优缺点提出了基于EMD分解的小波去噪算法,最后将文中提出的算法分别与小波去噪法和EMD去噪法进行比较分析.实验仿真表明:该算法能有效地实现心音信号中噪声的消除,并且能很好地保留心音信号的高频特征参数,对非平稳噪声的去除表现出独到的优势. 相似文献
13.
在轧制过程中,带钢表面经常会出现明暗交替的振痕,严重影响带钢表质量;由于轧制速度等轧制参数波动会导致振痕特征频率的变化,难以准确捕捉振痕特征频率,无法实现振痕特征频率的自动识别和实时监测。分析了带钢表面振痕特征,根据轧制参数确定了带钢表面振痕出现的特征频率,提出了对振动加速度信号的自相关处理和小波包分解相结合的方法,得到了小波包分解能量分布情况,克服了轧制参数波动对振痕特征频率的影响,实现了对带钢表面振痕的有效识别。试验证明该方法不仅便于计算机自动识别,而且为提高生产效率和经济效益提供了新的理论依据和实践支撑。 相似文献
14.
爆破监测信号多为含噪信号,噪声会使经验模态分解(EMD)的结果产生严重的模态混淆,使用改进算法EEMD对模态混淆有一定的抑制作用但效果并不明显。为此本研究将使用自适应补充集合经验模态分解(CEEMDAN)来处理含噪信号。比较EMD、EEMD、CEEMDAN对仿真信号的分解结果,计算EMD、EEMD、CEEMDAN得到的IMF的排列熵值,对EMD、EEMD、CEEMDAN的分解结果进行Hilbert变换,并比较三者时频谱的分辨率。最后将CEEMDAN用于水下钻孔爆破地震波时频分析中,结果表明:CEEMDAN不仅对模态混淆具有一定的抑制作用,且其分解结果经过Hilbert变换得到的时频谱在时域和频域上都具有较高的分辨率。 相似文献
15.
为了能准确地诊断复杂结构损伤是否产生以及产生的位置和程度,提出了一种小波包分解、多传感器特征融合和神经网络模式分类相结合的结构损伤诊断方法。首先,用正交小波包对多个传感器采集的振动信号进行小波包分解,并计算每个频带上的相对能量;然后把这些传感器信号的小波包相对能量融合,构成神经网络分类器的输入特征向量,从而实现损伤的诊断和评价。研究结果表明:正交小波包分解的频带能量分布能够较好地反映结构的损伤特征;特征融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,使诊断信息具有更高的精度和可靠性,提高了诊断准确率。 相似文献
16.
17.
为了准确提取时间序列的趋势特征,提出一种基于模态重构与多维评价的时间序列趋势提取算法。定义重要点作为时间序列分段点的候选集,运用自适应噪声的完备经验模态分解方法对时间序列进行分解和模态重构得到全局因子,使用全局因子度量重要点在整体维度上的重要程度,给出特征因子和边界因子的定义并分别用来度量重要点在单点维度和局部维度上的重要程度,根据3个评价因子综合评价重要点来选取分段点。仿真实验结果表明,该方法具有良好的去噪能力,在相同压缩率情况下的拟合精度比现有方法高,在对心电图趋势提取的实验中也验证了方法的有效性。 相似文献
18.
针对心电信号中存在基线漂移、工频和肌电干扰等噪声对后续的分析和诊断带来干扰的问题,提出了集合经验模态分解(EEMD)改进阈值函数的心电自适应去噪方法。运用EEMD将含噪心电信号分解得到一组由高频到低频分布的固有模态函数(IMF)。采用过零率自适应判断各IMF的噪声类别:若IMF包含高频噪声,采用结合软硬阈值优缺点所提出的改进阈值函数以去除IMF分量中的高频噪声;若IMF包含低频的基线漂移,则采用中值滤波器抑制基线漂移。最后将处理后的IMF分量叠加,即可重构去噪后的心电信号。实验结果表明,与已有的小波阈值法去噪后的信噪比(SNR)和均方根误差(RSME)对比,所提方法对心电信号去噪效果更加显著,而且能完整地保留波形特征。 相似文献
19.
基于小波包分析的能量阈值消噪 总被引:5,自引:0,他引:5
白噪声的方差和幅值随着小波尺度的增加而减小,而信号的方差和幅值与小波变换无关.按照信号能量的观点,提出一种基于小波包分析对图像的高频系数和低频系数同时进行能量阈值处理的消噪方法.同小波分析相比较,该方法可以有效地消除白噪声的干扰,计算简单且有较好的消噪效果. 相似文献
20.
对噪声SAR图像进行噪声类型识别,是对图像进行有针对性去噪的第一步。针对7种典型噪声的干扰图像,提取包括Zernike矩、小波高频不显著系数子带能量比、噪声能量特征值等在内的8类特征值。设计了反向传播(BP)神经网络分类器,可以实现对不同噪声类型干扰的SAR图像的有效识别。采用了包括Probabilistic Patch-Based filter、2DDFT-DWT等7种最新有效过滤SAR噪声图像的算法进行综合去噪。实验结果表明,系统能够在一定程度上自适应过滤受到不同噪声干扰的SAR图像信号。 相似文献