首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
设计了一种400~800 MHz带有源巴伦的低噪声放大器(balun-LNA).电路输入级采用共栅结构实现宽带匹配,输出端使用共源漏技术来实现巴伦功能,将单端输入信号转变为差分输出信号,利用参数优化设计来降低噪声性能.电路采用TSMC 0.18 μm RF CMOS工艺仿真,结果表明:在400~800 MHz工作频段内,balun-LNA的输入反射系数小于-12 dB,噪声系数为3.5~4.1 dB,电压增益为18.7~20.5 dB,在3.3V电压下功耗约为17.8 mW.  相似文献   

2.
提出一种利用噪声抵消技术减小热噪声因子的互补金属氧化物半导体(CMOS)宽带低噪声放大器电路.它具有不平衡变换器可转换单端信号为差分信号,无需外接平衡-不平衡变换器,也未采用电感匹配技术,进一步减小了芯片的面积.该低噪声放大器基于TSMC 0.18μm RF CMOS 1.8V的工艺设计,仿真和验证采用Cadence公司的Spectre工具.结果表明:在150~600MHz频带内的噪声系数为3.9dB,输入匹配参数S11小于-11.7dB,输入3阶截点IIP3为1.03dBm.  相似文献   

3.
基于UMC 0.18 μm CMOS 工艺,设计了一款用于全球卫星导航系统(GNSS)的宽带低噪声放大器(LNA). 其中,采用并联反馈电阻噪声抵消结构降低整体电路的噪声,使用电感峰化技术提升工作频带内的增益平坦度,进而优化高频噪声性能. 此外,采用共源共栅结构提高电路的反向隔离度. 仿真结果表明,在电源电压为1.8 V 的条件下,低噪声放大器的-3 dB 带宽为1 GHz,最大增益为15.08 dB,在1-2 GHz 内增益变化范围为±1 dB,噪声系数为2.65-2.82 dB,输入回波损耗和反向传输系数分别小于-13 dB 和-40 dB. 芯片核心面积为740 μm×445 μm.  相似文献   

4.
一种低功耗CMOS LNA优化设计方法   总被引:1,自引:0,他引:1  
基于SMIC 0.18 CMOS工艺,设计了一个工作频率为5.8 GHz的差分低噪声放大器。针对低功耗电路的设计要求,通过在输入级增加电容实现了限定功耗下的输入和噪声同时匹配。仿真结果表明,设计的低噪声放大器具有良好的综合性能指标。增益为22.47 d B,噪声系数为1.167 d B,输入反射系数(S11)、输出反射系数(S22)、反向隔离度(S12)分别为-24.74 d B、-17.37 d B、-31.52 d B。在1.5 V电源电压下,功耗为17.3 m W。  相似文献   

5.
本文基于UMC 0.18 μm CMOS工艺,设计了一款低噪声交叉耦合结构的跨阻放大器.该电路由优化的调节型共源共栅(RGC)结构和输出缓冲级构成,其中采用两级共源放大器作为RGC结构的辅助放大器,用于提升电路的等效跨导和带宽.此外,通过优化电路参数以及在输入端引入阶梯型无源匹配网络来进一步拓展带宽和降低电路噪声.测试结果表明,在探测器等效电容为300pF时,所设计跨阻放大器芯片的-3d B带宽为2.2GHz,跨阻增益为61.8d B?,平均等效输入噪声电流谱密度仅为9 pA/(Hz)~(1/2),成功实现了2.5Gb/s的传输速率.在1.8V电源电压下,芯片功耗为43m W,包括焊盘在内的芯片总面积为1×1mm~2.  相似文献   

6.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

7.
在传统共栅放大器结构基础上,基于0.18μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2GHz宽带低噪声放大器(LNA).该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化.后版图仿真结果显示,在0.8~5.2GHz频段内,该宽带LNA的功率增益范围为12.0~14.5dB,输入反射系数S_(11)为-8.0~-17.6dB,输出反射系数S_(22)为-10.0~-32.4dB,反向传输系数S12小于-45.6dB,噪声系数NF为3.7~4.1dB.在3GHz时的输入三阶交调点IIP3为-4.0dBm.芯片在1.5V电源电压下,消耗的功率仅为9.0mW,芯片总面积为0.7mm×0.8mm.  相似文献   

8.
鉴于传统共源共栅低噪声放大器由于受共栅级的影响.其噪声和线性度都不理想,为此在共栅级上引入一对交叉耦合电容和电感,以消除共栅级的噪声并提高放大器的线性度.采用特许半导体公司0.25μm射频互补金属氧化物半导体工艺进行了设计.仿真结果表明低噪声放大器在2.4 GHz处的噪声系数仪有1.34dB.该电路能够提供17.27 dB的正向增益、小于-38.37 dB的反向传输系数、小于-27.73 dB的输入反射系数、小于-15.85 dB的输出反射系数,该放大器的三阶交调点为0.58 dBm.消耗的功率为11.23 mW.  相似文献   

9.
基于源简并电感共源共栅结构,设计了1种有源自偏置低噪声放大器,既可消除偏置电路功耗,又能克服无源自偏置噪声较高的缺点;另外利用键合线作为高Q值电感元件,进一步降低噪声系数并减小芯片面积.所设计低噪声放大器采用TSMC 0.18μm CMOS工艺进行优化设计并流水制备.仿真结果表明,在12-16GHz频段内,噪声系数NF低于3.2 d B,输入3阶交调点IIP3为1.573 d Bm.研制芯片面积为540μm×360μm,在1.8 V电压下,消耗16 m A电流.结果表明芯片测试实现在12.2-15.5 GHz频段上,输入输出反射性能良好,正向增益S_(21)6 d B,反向隔离度S_(12)-32.5 d B.  相似文献   

10.
针对目前在LNA设计中存在需要在任意给定的功耗条件下噪声和输入阻抗同步匹配的问题,本文采用TSMC0.18μm RF工艺,通过利用共源共栅结构和功耗受限下噪声和阻抗同步匹配技术(PCSNIM),提出了一个可支持IEEE802.11a无线局域网(WLAN)标准的5.8GHz CMOS低噪声放大器,在中心频率处所提出的低噪放大器的噪声系数(NF)只有0.972dB。仿真结果表明:在1.8V供电电压下LNA的功耗为6.4mW,增益可达17.04dB,输入1dB压缩点(P1dB)约为-21.22dBm,同时具有良好的输入输出匹配特性。  相似文献   

11.
采用SMIC 0.13μm CMOS工艺设计并实现了一种多模差分窄带低噪声放大器,可以用于DCS1800,PCS1900,WCDMA和Bluetooth等多种无线接收机系统.电路采用共源共栅源极退化电感结构,输出为LC并联谐振网络,通过开关调节电容阵列改变谐振频率;输入采用片外可调匹配网络,实现不同频带下输入阻抗匹配,使低噪声放大器工作在不同通信标准下.考虑了静电保护和焊盘等引入的寄生电容,分析了输入阻抗、增益、噪声和线性度等关键参数,提出了输入阻抗匹配和噪声优化措施.测试结果显示,在DCS1800,PCS1900,WCDMA,Bluetooth模式下:噪声系数分别为2.3,2.3,2.4,2.5 dB;功率增益分别为8.0,8.8,9.3,9.4 dB;输入三阶交调点分布为-9.0,-6.3,-2.6,-1.5 dBm.在1.2 V电源电压下消耗电流3.3 mA.  相似文献   

12.
针对传统调节型共源共栅(RGC)跨阻放大器在带宽和增益方面的不足,提出1种可拓展带宽和优化平坦度的并联双反馈结构的全差分跨阻放大器.另外,采用反相器替代共源极辅助放大器来提高增益,减小等效输入噪声电流.输出缓冲级的输入端引入无源电感形成π型网络,以抵消其寄生电容.基于UMC 0.18μm CMOS工艺,制备出所设计的跨阻放大器芯片,并将其压焊在FR-4基材的印刷电路板上.测试结果表明,差分跨阻放大器的-3 d B带宽为3.5 GHz,总跨阻增益达60 d BΩ,工作频带内的群延时波动小于25 ps,平均等效输入噪声电流密度为18.72 pA/√Hz.在1.8 V工作电压下,芯片功耗为32.4 mW,裸片面积为800μm×600μm.  相似文献   

13.
为了改善现有宽带低噪声放大器(LNA)拓扑结构电路的性能,文中提出了一个交叉耦合和负反馈技术相结合的宽带低噪声放大器架构.该LNA基于复合NMOS/PMOS交叉耦合的无电感宽带差分并联反馈共源低噪声放大器(SFCS-LNA),进一步在输出端和输入端增加交叉连接的PMOS管,引入新的负反馈结构,通过对所引入PMOS管的跨导进行调节,增加了LNA输入匹配的自由度,以解决原复合NMOS/PMOS交叉耦合SFCS-LNA的反馈电阻受限于输入匹配的问题,从而在保证输入匹配的同时提高反馈电阻的阻值,改善LNA中的噪声、输入匹配和增益之间相互制约的矛盾.结果表明,该LNA架构能有效降低LNA的噪声系数和提高LNA的电压增益.  相似文献   

14.
提出了一种基于噪声消除与衬底交叉耦合技术的宽带低噪声放大器(LNA)架构,在共栅(CG)与并联反馈组合的噪声消除结构基础上,采用了衬底偏置和衬底交叉耦合技术使输入级的等效跨导增大,提高了噪声消除路径中的消除率,降低了电路的噪声指数.基于噪声消除原理,通过在输入级金属氧化物晶体管(MOS)的衬底上采用无源增益增强的方式,增加了输入级跨导的自由度,改善了原结构输入匹配与噪声指数之间相互制约的问题.根据LNA架构中节点的基尔霍夫电流公式,分析了新架构的增益、输入匹配和噪声指数.与现有噪声消除结构相比,采用衬底交叉耦合技术使这个LNA架构的噪声指数降低了13.3%.  相似文献   

15.
采用斩波稳定技术设计了一款低噪声CMOS放大器.该放大器用于神经信号的检测和放大,包括调制解调器、rail-to-rail输入放大级、带通滤波器、低通滤波器和振荡器5个模块.其中,rail-to-rail输入放大级提高了电路的输入共模范围,带通滤波器减小了残余失调,整个斩波稳定系统使电路显现低噪声特性.该电路采用TSMC 0.35μm CMOS工艺进行了仿真流片设计,低频等效输入相关噪声谱密度为13.2 nV/sqrt(Hz),开环增益为100 dB,3 dB带宽10 kHz,芯片面积为980μm×450μm.仿真结果显示,基于斩波稳态技术的低噪声放大器可作为一种有效的神经信号检测的前端电路.  相似文献   

16.
本文设计了一款应用于超高频射频识别标签的分裂低噪声跨导放大器的电流模无源混频器.这款电流模无源混频器的功耗低至2.2mW,包含跨阻放大器.在利用50%占空比本振信号的电流模无源混频器中,分裂的低噪声跨导放大器能够解决I/Q 2路镜像信号相互串扰的问题.因此,本文设计的电流模无源混频器能够继续利用50%占空比的本振信号,而不需要利用额外的电路将本振信号的占空比从50%变成25%,这样能够节省大量的功耗和面积.无源混频器前的阻抗匹配网络具有额外的电压增益,额外的电压增益能够抑制后级电路的噪声贡献,这有助于进一步节省无源混频器的功耗.这款无源混频器在SMIC 130nm CMOS工艺下流片.测试结果表明,无源混频器的电压转换增益为32.1dB,噪声系数为7.7dB,带内输入3阶交调点为-9.1dBm,功耗为2.2mW.芯片面积为0.32mm2.  相似文献   

17.
设计了一种应用于光发射功率自适控制系统中的低噪声宽带跨阻放大器,用0.6μm CMOS工艺实现,在156MHz-3dB带宽范围内最小均方根等效输入噪声电流为130pA/√Hz,在无光状态时电路的总电流为3.3mA,功耗低于国外同类产品。  相似文献   

18.
设计一种满足全频段全球卫星导航系统(global navigation satellite system,GNSS)接收机应用要求的低噪声放大器(low noise amplifier,LNA)。为提高射频前端的集成度并降低成本,提出一种基于发射极电感负反馈结构宽带LNA的实现方法,并对电路结构、宽带输入阻抗匹配和噪声性能进行分析。电路采用0.18μm SiGe BiCMOS工艺设计和实现。研究结果表明:在GNSS全频段范围(1 164~1 610 MHz)内,输入回损大于8.0 dB,输出回损大于8.9 dB,噪声系数低于1.30 dB,功率增益高于14.9 dB,输入三阶互调点为-5.8 dBm。芯片最低功耗为9.6 mW,面积约为600μm×650μm。  相似文献   

19.
采用TSMC0.35μmCMOS工艺,设计了一个5.7 GHz可用于无线局域网的低噪声放大器,电路在采用单端共源共栅结构的基础上为改善线性度而引进低频陷波网络(Low-frequency-trap Net-work),用ADS软件仿真与优化.仿真结果表明,在电源电压1.5 V情况下,噪声系数NF为1.22 dB,输入反射系数S 11为-15 dB,反向隔离性能S12为-32.9 dB,增益S21为17.8 dB,三阶交截点IIP3为 12.7 dBm,功耗为8 mW.  相似文献   

20.
为抑制干扰和提高电路的线性,采用0.13μm RF CMOS工艺设计了一款无需声表滤波器的射频前端电路系统.该设计采用一种新的带干扰消除环路可变增益低噪声跨导放大器、25%占空比本振信号的无源混频器和互阻放大器架构来实现抗干扰、低噪声、高线性的射频前端.流片和测试结果表明:该电路抑制带外强干扰达20 d B以上,在2.4 GHz可实现44.98 d B增益和2.03 d B噪声系数,同时获得-7 d Bm的输入三阶互调截点和+72 d Bm的输入二阶互调截点,实现了无需声表滤波器和抗干扰特性;整个射频前端供电电压为1.2 V,功耗为36 m A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号