首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于0.18 μm SiGe BiCMOS工艺的Ka波段功率放大器(PA),在25-30 GHz的频段内输出功率均达到瓦特级(30 dBm以上).该PA由驱动级与功率级放大器级联组成,两级均使用堆叠结构.其中,最后一级功率级电路采用两路功率合成的方法,所使用的功率合成网络为匹配网络的一部分.每级堆叠结构均采用最优级间匹配技术(相邻堆叠晶体管间匹配),使堆叠结构中每层晶体管达到最优负载阻抗,进而使堆叠结构达到最大输出功率.使用Agilent ADS软件进行PA性能仿真,版图仿真结果显示:工作在25-30 GHz的功率放大器最大输出功率为30.9 dBm,功率附加效率为22.9%,大信号功率-1 dB带宽为5 GHz(25-30 GHz),1 dB压缩点输出功率为28.5 dBm,大信号增益为22.7 dB.  相似文献   

2.
采用AMS 0.35μm SiGe BiCMOS工艺,设计了用于卫星通信用的3.33-3.53 GHz功率放大器.该功率放大器采用单端结构,工作于A类.在3.3 V电源电压下,功率放大器的功率增益为22.3 dB,输出1 dB压缩点为31.9 dBm,相应的功率附加效率为25.2%.仿真结果表明,该功率放大器具有良好的输入、输出匹配,工作稳定.  相似文献   

3.
针对射频识别技术的应用,该文设计了一款全集成的射频功率放大器.该功率放大器的中心工作频率为915MHz,采用0.18μm Si Ge Bi CMOS工艺的两级单端结构.由于键合线的寄生效应会造成功率放大器的输出功率和效率的减小,本文利用HFSS(High Frequency Simulator Structure)软件建立和分析了键合线的模型,并利用ADS(Advanced Design System)软件拟合仿真数据得到了键合线的等效电路.在功率放大器的仿真中,利用键合线的等效电路来模拟键合线的寄生效应,在此基础上优化电路,最终芯片的面积为(1.6×1.2)mm~2.后仿结果表明,在3.3 V的电源电压下,在860 MHz~960 MHz的工作频段类,输入回波损耗小于-12 d B,输出回波损耗小于-15 d B.功率放大器的1 d B压缩点的输出功率为23 d Bm,功率附加效率(Power-Added Efficiency,PAE)大于20%,功率增益为17.8 d B.  相似文献   

4.
2.4 GHz 0.18 μm CMOS Doherty 功率放大器设计   总被引:1,自引:0,他引:1  
采用SMIC 0.18 μm CMOS 工艺设计了一款2.4 GHz Doherty结构功率放大器.两子功放均采用两级放大结构,提高了功放的功率增益和功率附加效率(PAE).模拟显示最大功率输出为28.75 dBm,对应PAE为43%,功率1 dB压缩点输出功率为26.71 dBm, 对应PAE为38%.功率增益为24 dB.与以往报道的CMOS Doherty功放相比,PAE和功率增益均得到了明显的改善.  相似文献   

5.
为了减小功率放大器(power amplifier,PA)的功率损耗,提高功率放大器的增益与工作效率,本文提出一种将两级放大和反馈结构相结合的具有高效率高增益的E类功率放大器,并利用Cadence软件对功率放大器进行分析及仿真验证。仿真结果表明,在180nm CMOS工艺情况下,当电源电压为3.6V,电路频率为8.9GHz时,本文E类功率放大器的输出功率为23.5dBm,增益为24dB,功率附加效率(power added efficiency,PAE)为21%。与传统的PA相比,本文E类功率放大器在增益和功率附加效率方面均得到了提高,适用于通信、电子测量等系统。  相似文献   

6.
为了在保证芯片面积的同时提高变压器在不同模式下的能量传递效率,文中设计了一款用于无线通信射频系统的新型射频功率放大器芯片,提出了基于折叠式比例串联变压器的功率合成结构,该结构引入了交叉耦合系数以增强变压器初次级的耦合,改善能量传递效率.采用0. 18μm RF CMOS工艺实现了该芯片,其工作频率为2. 4 GHz.测试结果表明:在2. 5 V的供电下,高输出功率模式时,饱和输出功率和最大线性输出功率分别为28. 3和27. 2 d Bm,功率附加效率分别为33. 5%和31. 6%;低输出功率模式时,最大线性输出功率为19. 8 d Bm,功率附加效率为24. 1%.芯片性能良好,可以满足高效、高密度及多制式无线通信射频链路的应用要求.  相似文献   

7.
针对当前应用于北斗卫星系统的射频功率放大器的小功率、低效率、高成本等缺点,本文提出一种基于功分合路器的改进型三级级联射频功率放大器设计方案。利用负载牵引法对末级功率放大器进行设计,利用集总参数与分布参数相结合的技巧对微带低通滤波器进行设计,利用小信号S参数法对前置级放大器进行设计。通过详细的理论分析和仿真优化,结合射频硬件电路和结构的设计要求,实际制作并实现稳定高效的30 W射频功率放大器设计。该方案可使低供电电压的小功率射频器件实现较大功率输出,并较好地兼顾线性度和效率。  相似文献   

8.
为了解决E类功率放大器最大工作频率(f max )受晶体管输出电容限制的问题,提出了一种新型的E类功率放大器输出匹配电路结构.该结构能够同时实现对晶体管在基波和谐波下的过剩输出电容进行补偿,一方面提升了E类功率放大器在高频工作时的效率,另一方面也降低了电路的复杂度和实现难度.利用所提出的方法,采用GaN HEMT器件,设计并实现了工作在2.5 GHz的E类功率放大器.测试结果表明,其最大功率附加效率(PAE)达到80%,饱和输出功率为40.1 dBm.  相似文献   

9.
文中采用SMIC 0.18μm CMOS 工艺设计了一款2.4GHz Doherty结构功率放大器。两子功放均采用两级放大结构,提高了功放的功率增益和功率附加效率(PAE)。模拟显示最大功率输出为28.75dBm,对应PAE为43%,功率1dB压缩点输出功率为26.71dBm, 对应PAE为38%。功率增益为24dB。与以往报道的CMOS Doherty功放相比,PAE和功率增益均得到了明显的改善。  相似文献   

10.
基于Advanced design system(ADS)平台,通过优化偏置电压和输入功率比例改善三阶互调失真(IMD3),仿真设计一款工作于2.14 GHz频段WCDMA基站不对称功率驱动的反向Doherty功率放大器(IDPA).IDPA结构中接在峰值放大器补偿线后的微带线能减少功率泄露,改善输出效率.仿真结果表明,当载波放大器的栅极偏置电压为2.74 V,峰值放大器的栅极偏置电压为0.9 V并且输入功率比例为1∶2.07,输出功率为44 dBm时其功率附加效率(PAE)为25.26%,比AB类平衡功率放大器提高了9.63%,比传统的Doherty功率放大器(DPA)提高了1.12%;IMD3为-40.82dBc,和AB类平衡功率放大器相比改善了3.34 dBc.因此,这种简单结构的不对称功率驱动的IDPA实现了高效率和高线性度的良好折中,能够很好地适用于现代无线通信系统中.  相似文献   

11.
设计了一种具有较高输出功率和较高功率效率的B类功率放大器,采用了负载牵引和源牵引的设计方法得出最大输出功率对应的最优负载阻抗和源阻抗,并运用阻抗匹配技术分别实现负载阻抗和源阻抗到50Ω的匹配电路设计.仿真结果表明,工作频率为960 MHz下该功率放大器的功率附加效率为69.39%,输出功率为45.32 d Bm.  相似文献   

12.
给出了单环前馈型功率放大器电路结构,分析了LDMOS有源器件主要参数与工作温度的关系,给出了由LDMOS器件构成的功率放大器的温度特性.提出了针对单环前馈型功率放大器的自适应功率控制和温度补偿方法,并给出了实际测试结果.  相似文献   

13.
音频功率放大器(定阻抗式)与多个扬声器连接时,在各扬声器分配功率为预定的条件下放大器输出级与负载阻抗匹配问题,在许多书刊里都用下面一类公式组来计算(参看图一):  相似文献   

14.
功率放大器是磁耦合无线电能传输系统的前端功率输入设备,对于无线电能传输系统的高效稳定运行起到至关重要的作用.本文给出了功率放大器的基本拓扑、匹配网络和整体电路设计方法,使其达到较高的传输效率.采用ADS软件对功率放大器性能进行分析,结果表明,设计的功率放大器在8.5 MHz中心频率上,当输入信号为29 d Bm时能够获得的最大功率为18.928 W,效率为89.516%.  相似文献   

15.
应用于WLAN的高效率F类功率放大器   总被引:1,自引:0,他引:1  
为了提高在高速率信号传输下无线通讯发射系统中功率放大器的工作效率,提出了一种结构新颖的高效率F类功率放大器.通过计算机仿真与实验板调试相结合的方法确定了放大器的最佳漏极阻抗,根据F类放大器漏极电压和漏极电流是相位差为λ/4的方波和半正弦波的特性,通过仿真软件设计和优化,设计出的谐波滤波网络在输出谐波频点有良好的滤波性能.为了降低栅源电容对输入信号造成的失真,在输入端口加入短截线,提高了放大器的漏极效率.通过测试,功率放大器工作在2.4GHz时,在2dB增益压缩点的功率附加效率为67%,输出功率为30dBm.测试结果表明,该高效率功率放大器适合应用于WLAN无线通讯发射系统.  相似文献   

16.
提出了一款基于GaAs HBT工艺的高功率功率放大器(Power Amplifier,PA).设计采用三级放大器级联的结构以提高功率放大器的功率增益,在功率晶体管的基极处串联RC有耗稳定网络来提高稳定性及改善增益平坦度,采用电流镜有源偏置的方式提升大信号输出时的功率、效率及线性度表现,同时在输出级放大器处添加功率检测电路以得到随输出功率变化的直流电压信号.EM仿真结果表明:PA的输出频率范围为5.1~6.5 GHz,增益为33~33.7 dB,S11、S22<-9.8 dB,饱和输出功率为32.8~34.9 dBm,峰值效率为38.7 %~42 %,在满足无线局域网标准802.11ax、调制策略为MCS7的情况下,EVM达到-30 dB时输出功率为20~21 dBm,芯片面积为1.69 mm×0.73 mm.测试结果表明:S参数测试结果与仿真结果表现出较好的一致性,PA在满足前述无线局域网标准时输出功率为13.6~19.8 dBm.  相似文献   

17.
F类射频功率放大器作为开关模式放大器的一种,其理想效率为100%。传统F类功率放大器的设计方法是利用输出端谐波抑制,在晶体管的漏极得到近似方波的电压信号和近似半正弦波的电流信号,以此提高放大器效率。文章通过研究电路的结构,在F类功率放大器的输入端加入谐波抑制电路,同时利用输入和输出谐波抑制匹配网络,能够更有效提高输出功率和功率附加效率;结合宽禁带功率器件,在S波段完成一款电路的设计,在3.45~3.55GHz频带内,输入激励为28dBm条件下,测试得到最大PAE能够达到78.3%,输出功率40.5dBm,实验结果和仿真结果基本吻合。  相似文献   

18.
基于0.15 μm GaAs PHEMT工艺,设计了一款Ka波段功率放大器.设计中改进了拓扑结构和稳定电路,优化栅宽,将匹配电路与Wilkinson功分器结合,并采用预匹配技术与频率补偿技术,达到了提高增益,减小芯片尺寸及损耗的目的.仿真结果显示,该功率放大器在28-30.5 GHz频带内功率P 1 dB 大于 38 dBm,功率附加效率大于18%,增益大于23.5 dB,芯片面积为3.69×3.87 mm2  相似文献   

19.
主要运用Volterra级数理论分析射频功放(RFPA)器件工作在弱非线性条件下信号失真特性.介绍了Vol-terra级数在非线性建模中的应用,推导了非线性传递函数的公式.在Advanced Design System 2006A软件的仿真环境下对射频功率放大器进行仿真,利用计算机仿真实现了在弱非线性条件下对任意频率输入时功率放大器的输出频谱估计.  相似文献   

20.
一种宽频带大摆幅的三级CMOS功率放大器   总被引:2,自引:1,他引:1  
设计了一种用于耳机驱动的CMOS功率放大器,该放大器采用0.35μm双层多晶硅工艺实现,驱动32Ω的电阻负载.该设计采用三级放大两级密勒补偿的电路结构,通过提高增益带宽来提高音频放大器的性能.仿真结果表明,该电路的开环直流增益为70dB,相位裕度达到86.6°,单位增益带宽为100MHz.输出级采用推挽式AB类结构,能有效地提高输出电压的摆幅,从而得到电路在低电源电压下的高驱动能力.结果表明,在3.3V电源电压下,电压输出摆幅为2.7V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号