首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同的孪生支持向量回归机参数取值,通过有限次数迭代和灰狼优化算法的位置更新机制得到孪生支持向量回归机的最优参数。实验结果表明,该算法能够找到合适的参数;与现有算法相比,该算法的预测性能更佳,寻优时间显著缩短。  相似文献   

2.
针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。  相似文献   

3.
【目的】通过改进灰狼优化算法对医疗锂电池进行剩余寿命预测,从而保障抢救时机并减少医疗事故的目的。【方法】运用小波核极限学习机(Wavelet kernel extreme learning machine,WKELM)与小生境灰狼算法(Niche grey wolf optimization,NGWO)相融合的算法形成改进灰狼优化算法WKELM-NGWO算法。采用NGWO算法对WKELM参数进行优化处理,并将最大化训练集的分类准确度作为目标函数,得到寻优过程的数学模型。采用差分方式对医疗电子设备锂电池容量的时间序列进行处理,得到多维时间序列特征向量,归一化处理获得特征向量,并将其分为训练集和测试集。计算得出每只灰狼个体的适应度值fi,并对适应度值fi进行排序,适应度值fi排在前三的个体位置分别记为Xα,Xβ,Xδ。选择最优的灰狼个体位置作为WKELM参数对数据进行训练后,对心脏起搏器用锂电池和心脏除颤仪用锂电池两种锂电池测试样本进行剩余寿命预测操作。【结果】在相同的预测起始点下,WKELM-NGWO算法的均方根误差(RMSE)误差低于WKELM和NGWO算法,基于融合算法WKELM-NGWO的医疗电子设备锂电池剩余寿命(Remaining useful life)预测曲线更接近电池的退化曲线。【结论】WKELM-NGWO融合算法增强了对不同数据的适应能力,既克服了小波核极限学习机(WKELM)学习速度慢、结构不稳定的问题,也克服了小生境灰狼算法(NGWO)求解精度低、收敛速度慢从而导致跳不出局部最优解的问题。  相似文献   

4.
实时、准确的短期交通流预测是智能交通系统的基础和关键技术之一.由于灰狼优化算法(GWO)存在收敛速度慢、易陷入局部最优解等缺陷,为进一步提升短期交通流预测的精度,提出了基于改进灰狼算法(IGWO)优化支持向量机(SVM)的短期交通流预测模型.首先,本文提出引入帐篷(Tent)混沌序列初始化灰狼种群,更改收敛因子的线性递...  相似文献   

5.
荷电状态(SOC)是动力锂电池管理系统的重要参数,使用传统算法优化锂电池SOC预测模型参数,收敛性相对较差,容易陷入局部最优解。对此,采用改进果蝇算法(IFOA)对最小二乘支持向量机(LSSVM)的参数进行优化,通过引入自适应松弛项来提高预测精度和收敛速度,获取全局最优解。选用磷酸锂电池为研究对象,测量其工作电压、工作电流和SOC,并将数据作为测试集,在MATLAB平台上建立基于IFOA优化的最小二乘支持向量机SOC预测模型。结果表明:IFOA优化的LSSVM动力锂电池SOC预测结果和实测结果吻合良好,平均绝对误差(MAPE)为1.02%,泛化能力强,预测精度相较果蝇算法最小二乘支持向量机(FOA-LSSVM)和贝叶斯算法最小二乘支持向量机(BEF-LSSVM)模型的精度更高。  相似文献   

6.
路畅  崔英花 《科学技术与工程》2023,23(18):7809-7815
该文针对复杂的室内环境下,传统的RFID室内定位技术获得的接收信号强度特征向量维数较低,不能充分描述环境信息,无法获得良好的定位效果的问题,基于联合指纹提出一种鲁棒性强的高精度室内定位算法。该算法首先从RFID阅读器接收到的信号中提取信号强度和相位差数据,建立指纹库。然后利用凹函数递减策略改进PSO算法,优化SVR模型训练样本数据,建立参考标签的指纹特征和其与阅读器距离的映射关系。最后利用改进PSO算法迭代寻优,从而提高室内定位精度和鲁棒性。在仿真中,将该算法与GA-SVR和PSO-SVR算法进行比较,分析了不同指纹数据集和噪声对定位性能的影响。仿真结果表明,在相同指纹数据集和环境下,该算法的定位精度和系统稳定性均优于其他两种算法。  相似文献   

7.
提高风电场功率超短期预测的稳定度、精度和速度,是风电并网的关键技术之一.分析了风电场气压、温度、湿度等气象因素和风速对风机输出功率的影响,用风电场的气象数据和风速构建风电场物理模型,提出了一种用灰狼算法优化SVR参数C、g的风电场功率超短期预测模型,通过与GA-SVR、PSO-SVR预测模型比较,结果表明,该预测模型稳...  相似文献   

8.
在支持向量机的回归分析过程中,由于多个参数需要同时调整,并且参数的取值范围大,给实际的工程应用带来很大困难,针对上述问题,本文提出了动态网格优化算法,使用优化后的参数来训练支持向量机,用测试样本对回归模型进行评价后可以得到较小的均方误盖值。  相似文献   

9.
10.
基于支持向量回归机和粒子群算法的改进协同优化方法   总被引:1,自引:0,他引:1  
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,...  相似文献   

11.
针对推荐系统中用户项目评分矩阵稀疏性和冷启动问题,采用灰狼算法(GWO)优化支持向量机(SVM)分类器,二者相结合,提出一种新算法.利用卷积矩阵分解模型(ConvMF)提取用户-项目数据的有效特征向量,降低维数,形成样本集.再将样本集用于向量机的分类识别,对错分点进行自动检测,通过灰狼算法迭代更新,找出全局最优值,从而...  相似文献   

12.
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测.  相似文献   

13.
借助遗传算法中交叉和选择的思想策略,提出一种改进的粒子群算法对模糊支持向量机的参数进行优化选择.结果表明:该方法能够减少模糊支持向量机参数选择的盲目性,增强了模糊支持向量机的泛化能力,同时也提高了其分类精度.  相似文献   

14.
《河南科学》2016,(6):845-851
针对支持向量机在解决小样本、非线性和高维模式处理问题上的优势,将支持向量回归与波束优化理论进行对比,修正支持向量回归价值损失函数,分析支持向量回归波束优化的基本方法及其应用条件,建立标准支持向量回归波束优化模型,研究了基于标准支持向量回归波束形成器的优化模型及具体实现过程,并进行了数值仿真实验.仿真实验结果表明,在不同的阵型、不同的价值损失函数、不同的数据样本和不同的信噪比下,基于标准支持向量回归的波束形成器在指向性和旁瓣级等性能指标上均取得了较好的效果,为波束形成器的优化设计提供了一种有效且可行的方法.  相似文献   

15.
基于蚁群优化算法的支持向量机参数选择及仿真   总被引:2,自引:0,他引:2  
基于支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,以蚁群优化算法为基础,给出支持向量回归机参数优化的一种新方法。该方法以最小化k-fold交叉验证误差为目标,对支持向量回归机中的核参数σ和惩罚系数C由蚁群系统中的节点值体现,数值的优选通过蚂蚁对最优路径的选择进行确定。计算机仿真结果表明:与正交法、遗传算法等相比,该方法在参数优化方面有良好的鲁棒性能和较强的全局搜索能力;该方法用于青霉素发酵过程的建模研究,建模精度较高。  相似文献   

16.
为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(par-ticle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型.首先,对获取的高速公路交通流数据进行异常值剔除、缺失值填充以及归一化...  相似文献   

17.
将车载式安全工器具柜应用于配网抢修车辆中,其供电电池性能直接影响了工器具柜的稳定运行,因此需要精确预估供能电池的健康状态(state of health, SOH).本文提出一种基于海鸥算法(SOA)和注意力机制优化改进长短时记忆神经网络(long short-term memory neural network, LSTM)的锂电池健康状态估计方法.首先提取出4种与电池老化特性强相关的健康因子,将其历史运行数据输入到结合SOA-LSTM思想设计的SOH估计方法;其次利用Attention机制对输入变量进行权重分配,以强调关键特征在SOH预测中的作用;最后利用已公开的电池充放电曲线数据集对所提算法进行测试验证,并与其他算法进行对比.结果表明,本文方法可实现高精度SOH预测,均方根误差为0.011,模型拟合度达到98%以上.  相似文献   

18.
由于行星齿轮齿轮箱的振动信号具有非平稳、非线性特性,在复杂工况下,会对其早期微弱的故障信号造成干扰,不能正确地识别出故障信息。为解决以上问题,采用基于变分模态分解(variational mode decomposition, VMD)与灰狼优化支持向量机的故障诊断方法。利用中心频率近似方法,求解出了变分模态分解的参数K,对分解出的本征模态函数(intrinsic mode function, IMF)分量进行相关性分析,优选出分量进行信号重构。将重构信号进行故障特征提取,利用灰狼优化支持向量机的方法进行故障模式识别。实验结果表明:采用所提方法对行星齿轮箱的故障识别准确率达到99.375%。  相似文献   

19.
利用粒子群优化算法和支持向量回归方法建立不同食品的比热容与其水、蛋白质、碳水化合物和脂肪等含量间的预测模型,且在相同的训练样本和测试样本条件下,该预测模型的食品比热容预测精度高于反向传播神经网络模型,具有更强的泛化能力。结果表明:该预测模型能有效地预测食品比热容。  相似文献   

20.
泛化能力是智能方法用于参数预测的最重要的问题之一,提出了支持向量回归集成方法。为了增加个体之间的差异性,提出了基于聚类方法的个体生成方法。首先利用聚类方法将样本分为若干子类,然后用不同结构的支持向量回归学习不同的样本子类,权值由个体在验证集上的泛化误差决定。将ESVR陀螺仪参数飘移数据的预测,并与单支持向量回归,单神经网络,神经网络集成以及组合预测方法进行比较。结果证实,ESVR的预测精度总体高于其他方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号