首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出融合用户评论的协同过滤推荐算法,通过挖掘电商网站的用户评论信息,获取用户评论中的产品特征和意见,通过计算每个特征意见对的极性,得到特征矩阵,结合用户意见质量形成的用户评分矩阵,求出用户评分的相似度.最后结合特征矩阵和用户评分相似度得出目标用户的综合相似度,并由预测评分得出产品推荐表,对用户进行产品推荐.实验结果表明,提出的算法与常用的推荐算法相比,改善了推荐的质量,同时推荐精度得到提高.  相似文献   

2.
提出一种基于用户等级的协同过滤推荐算法, 解决了传统协同过滤推荐算法的扩展性问题. 该算法首先定义用户等级函数, 依据用户所评价的项目数确定用户等级; 并通过仅在用户等级的邻域内查找近邻的方法, 提高协同过滤推荐的效率. 实验结果表明, 该算法与传统协同过滤推荐算法相比, 在不影响推荐质量的前提下, 极大地提高了推荐效率.  相似文献   

3.
针对网购行为中商品浏览量排名靠前而销量滞后的问题, 在用户购买意愿力的基础上, 提出一种增强评分矩阵协同过滤推荐算法. 首先, 利用惩罚因子作为增强型矩阵的评价权重, 加权表征用户购物意愿力的商品画像, 取得增强型矩阵的预测评分; 其次, 融合以基于项目的协同过滤推荐, 建立由潜在兴趣商品间的项目相似度矩阵得到的基础型评分矩阵; 最后, 以TOP-N结果向购买意愿较强的目标用户推荐排名靠前的商品. 实验结果表明: 与传统基于项目的协同过滤推荐算法相比, 增强评分矩阵协同过滤推荐算法的推荐准确率提升2.48%, 召回率提升4.31%, 综合值F1提升3.19%, 从而有效解决了用户感兴趣商品排名靠后, 且不被购买或购买次数较少的问题, 以达到购买意愿力较强、 目标用户更准的推荐宗旨, 进而提高推荐精度.  相似文献   

4.
协同过滤技术作为目前最常见的个性化推荐技术之一,被广泛认可和应用.作为基于内容的算法执行方式,协同过滤在准确性上具有相当的优势.该算法的核心问题是相似度的计算.本论文介绍了传统协同过滤算法,并对原有的相似度公式进行了优化,使得相似度计算更具有准确性.实验表明,文中提出的优化方法在推荐精度上有显著提高,降低了平均绝对误差(Mean Absolute Error,MAE).  相似文献   

5.
针对传统相似度计算方法只利用用户的评分信息这一显性反馈行为进行推荐, 导致推荐效果不理想的问题, 提出一种新的相似度计算方法, 通过引入权重调节机制及用户行为偏好等隐性反馈信息, 提升推荐的准确度. 首先, 根据负采样的反用户频率, 降低流行物品全局软件工程的影响程度, 并使用共同评分行为的最小权重, 调节因共同评分数过少而导致的推荐准确度偏差. 其次, 提出项目偏好词定义, 根据项目偏好词矩阵计算出在项目特征上具有共同偏好的用户. 最后, 在MovieLens数据集上进行实验对比分析, 实验结果表明, 改进后的相似度计算有较优的MAE值, 且有更高的推荐准确性.  相似文献   

6.
针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法.利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系.仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40~60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分.  相似文献   

7.
8.
本文介绍了基于用户的协同过滤推荐的算法,并分析该算法的优劣,提出了解决办法。  相似文献   

9.
协同过滤算法为推荐系统提供了一种方法,但传统的协同过滤方法推荐精度低.提出一种考虑用户评分相似性的协同过滤算法,通过在皮尔逊相关系数中加入项目数量相似度和用户评分相似度两个因素来计算用户间的相似度,以产生更合理的邻居用户,提高推荐精度,完成对用户的推荐,同时邻居用户的选取采用动态阈值设定方法.实验结果表明,所提出的算法相比传统方法选择出的邻居更为精确,推荐质量更高.  相似文献   

10.
针对传统协同过滤推荐算法通常针对整个评分矩阵进行计算,存在效率不高的问题,提出一种基于K-medoids项目聚类的协同过滤推荐算法.该算法根据项目的类别属性对项目进行聚类,构建用户的偏好领域,使用用户偏好领域内的评分矩阵进行用户间相似度的计算,得到目标用户的最近邻居集,并生成推荐结果.与常用的K-means聚类方法相比,采用K-medoids方法对项目类别属性进行聚类,不仅克服了评分聚类可靠性不高的问题,而且算法还具有更好的鲁棒性.实验结果表明,该算法能有效提高推荐质量.  相似文献   

11.
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法。用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法。最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐。实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题。  相似文献   

12.
针对传统协同过滤推荐数据稀疏会影响推荐质量,以及项目最近邻居集的计算忽略用户多兴趣及提高推荐的准确度问题,该文采用混合模型改进了相似性度量计算,综合Pearson相关系数与修正余弦相似性,提出了一种基于混合相似度的用户多兴趣推荐算法.实验表明:该推荐方法的相似度计算更高效,不仅提高推荐准确率,而且使用户有更好的推荐体验.  相似文献   

13.
协同过滤被广泛的应用在推荐系统中,传统计算相似度使用皮尔森相关系数,余弦相似度、Jaccard相似度等方法,但在处理稀疏数据时,其准确度不理想。针对这一问题,提出一种基于路径搜索的相似度计算方法,能够反映用户或项目之间间接关系。实验结果表明,相比传统的相似度计算方法,该方法在准确度上有较好的提升。  相似文献   

14.
结合情景和协同过滤的移动推荐算法   总被引:1,自引:1,他引:1  
针对移动个性化推荐问题,通过将用户的情景信息引入到协同过滤推荐过程,提出一种结合情景和协同过滤的移动推荐算法。该算法首先通过情景相似度的计算来获得用户当前情景的近似情景集;并对"用户-项目-情景"三维模型采用情景预过滤方法进行降维,得到传统协同过滤"用户-项目"二维模型,然后结合Slope one算法进行项目的偏好预测和推荐。实验表明,该算法与传统协同过滤、Slope one算法相比,具有更高的推荐精确度。  相似文献   

15.
基于用户的不同风险偏好特征,提出一种融入用户风险偏好的三支协同过滤推荐模型来提高推荐规则的准确性.首先,考虑用户的不同风险偏好对项目评分的影响,基于用户-项目评分矩阵定义用户关于项目的偏好概率测度,建立用户-项目偏好概率模型,从理论上证明了该模型是现有模型的推广和拓展.其次,利用决策粗糙集,推导出用户在不同风险偏好下的三支推荐模型阈值表达.然后,以上述工作为基础,将推荐准确性和推荐成本作为优化目标,设计基于粒子群优化算法的用户偏好概率模型参数确定方法 .最后,在MovieLens数据集上的实验验证了提出模型的有效性.  相似文献   

16.
协同过滤(collaborative filtering,CF)是推荐系统中最常用和最成功的推荐技术之一.现实中的数据往往比较稀疏,用户之间缺少共同评定项目,使一些传统的相似性度量无法进行计算;此外,传统的协同过滤算法忽视了用户偏好问题,这样会造成推荐精度的下降.针对这些问题,从用户全局项目和地方评级信息分析影响用户兴...  相似文献   

17.
在互联网母婴领域中,由于育婴网络自身的特殊性,推荐算法不仅与用户以及项目的信息有关还与儿童的数据信息有关,而传统的用户相似度计算并未考虑儿童的数据信息.针对此问题,重新定义用户相似度计算方法,将儿童的数据信息通过加权融合的方法融入用户相似度计算中,并提出一种融合儿童成长信息的协同过滤算法,实验结果表明,该算法的准确率与召回率都优于传统算法,推荐系统的推荐质量也有所提高.  相似文献   

18.
针对推荐算法数据稀疏及聚类中心点敏感问题,提出了一种基于用户偏好和麻雀搜索聚类的协同过滤推荐算法.首先使用评分偏好模型对原用户项目矩阵进行修正,得到新的用户偏好-项目矩阵.利用麻雀搜索对聚类中心点进行优化,从目标用户所在簇内得到最近邻,提高了算法迭代速度,改善了聚类中心点敏感的问题.使用相似度公式对目标用户未评分项目进...  相似文献   

19.
个性化推荐系统中应用得最广泛的是协同过滤算法,而相似度的计算是协同过滤算法的核心。针对传统相似性度量方法中将用户对单个产品与单类产品的喜好未加以区分的不足,提出了一种基于用户兴趣与喜好的相似性计算方法。该方法根据用户兴趣与喜好,将对某个产品与某类产品的喜好程度区分开来,再通过加权的方式形成最终计算同类产品不同用户间的相似性。最后,采用Movie Lens数据集进行算法测试,测试实验结果表明,该计算方法的计算质量有明显提高。  相似文献   

20.
用户间的信任关系、用户对商品的偏好兴趣及商品的时效性都会影响对商品的推荐效果.将这些因素引入到基本的HITS算法中,对HITS算法进行了改进.将用户对商品的偏好兴趣矩阵进行了改进,利用隐馈数据通过逻辑回归算法估计用户对商品的偏好兴趣,对评分为零的情况赋予了不同的偏好兴趣度,这样更符合实际.将改进的HITS算法和协同过滤算法相结合得到一个混合推荐算法,同时将用户分为活跃用户和非活跃用户分别进行推荐.将提出的算法在Movielens数据集上进行了试验,结果表明该算法在一定程度上缓解了数据稀疏和冷启动的问题,推荐效果优于基于用户的协同过滤算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号