首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了一种输入轨至轨CMOS运算放大器,该放大器采用了共源共栅结构做增益级,在输入级跨导使用了电流补偿,以使其几乎恒定.在3 V电源电压下的静态功耗只有180μW,带5 p的负载电容时,直流开环增益,单位增益带宽分别达到75 dB,1.5 MHz.  相似文献   

2.
基于UMC 0.18 μm CMOS 工艺,设计了一款用于全球卫星导航系统(GNSS)的宽带低噪声放大器(LNA). 其中,采用并联反馈电阻噪声抵消结构降低整体电路的噪声,使用电感峰化技术提升工作频带内的增益平坦度,进而优化高频噪声性能. 此外,采用共源共栅结构提高电路的反向隔离度. 仿真结果表明,在电源电压为1.8 V 的条件下,低噪声放大器的-3 dB 带宽为1 GHz,最大增益为15.08 dB,在1-2 GHz 内增益变化范围为±1 dB,噪声系数为2.65-2.82 dB,输入回波损耗和反向传输系数分别小于-13 dB 和-40 dB. 芯片核心面积为740 μm×445 μm.  相似文献   

3.
设计了一种应用于OFDM UWB系统中的完全采用CMOS工艺的滤波器和VGA.滤波器采用5阶Chebyshev近似、G-mC biquad结构,转折频率为264 MHz,OTA采用伪差分结构以提高滤波器的线性度;VGA采用跨导增强型源级负反馈结构来控制增益,并加入源级负反馈电容进行高频补偿以拓展带宽.采用DC OffsetCorrection电路降低直流失调,并通过数字控制电容阵列(DCCA)来实现滤波器的转折频率的调谐.电路采用0.18μm CMOS工艺,1.8 V电源电压.电路的仿真结果表明滤波器和VGA系统的增益为6~48 dB,可变增益为42 dB,6 dB/step,在输入电压峰峰值为100 mV时THD小于-54 dBc,线性度为-6.35 dBV,噪声系数在通带内小于25 dB,消耗电流为30 mA.  相似文献   

4.
提出了一种基于0.18 μm SiGe BiCMOS工艺的Ka波段功率放大器(PA),在25-30 GHz的频段内输出功率均达到瓦特级(30 dBm以上).该PA由驱动级与功率级放大器级联组成,两级均使用堆叠结构.其中,最后一级功率级电路采用两路功率合成的方法,所使用的功率合成网络为匹配网络的一部分.每级堆叠结构均采用最优级间匹配技术(相邻堆叠晶体管间匹配),使堆叠结构中每层晶体管达到最优负载阻抗,进而使堆叠结构达到最大输出功率.使用Agilent ADS软件进行PA性能仿真,版图仿真结果显示:工作在25-30 GHz的功率放大器最大输出功率为30.9 dBm,功率附加效率为22.9%,大信号功率-1 dB带宽为5 GHz(25-30 GHz),1 dB压缩点输出功率为28.5 dBm,大信号增益为22.7 dB.  相似文献   

5.
2.4 GHz 0.18 μm CMOS Doherty 功率放大器设计   总被引:1,自引:0,他引:1  
采用SMIC 0.18 μm CMOS 工艺设计了一款2.4 GHz Doherty结构功率放大器.两子功放均采用两级放大结构,提高了功放的功率增益和功率附加效率(PAE).模拟显示最大功率输出为28.75 dBm,对应PAE为43%,功率1 dB压缩点输出功率为26.71 dBm, 对应PAE为38%.功率增益为24 dB.与以往报道的CMOS Doherty功放相比,PAE和功率增益均得到了明显的改善.  相似文献   

6.
一种高性能全差分运算放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一种具有高增益、大带宽的全差分折叠式共源共栅增益自举运算放大电路,适用于高速高精度流水线模数转换器余量增益电路(MDAC)的应用,增益自举运算放大器的主放大器和子放大器均采用折叠式共源共栅差分结构,并且主放大器采用开关电容共模反馈来稳定输出电压,该放大器工作在5.0V电源电压下,单端负载为2pF,采用华润上华(CSMC)0.5μm 5VCMOS工艺对电路进行仿真测试,结果显示该运放的直流增益可达到126.3dB,单位增益带宽为316MHz。精度为0.01%时的建立时间为4.3ns。  相似文献   

7.
本文基于UMC 0.18 μm CMOS工艺,设计了一款低噪声交叉耦合结构的跨阻放大器.该电路由优化的调节型共源共栅(RGC)结构和输出缓冲级构成,其中采用两级共源放大器作为RGC结构的辅助放大器,用于提升电路的等效跨导和带宽.此外,通过优化电路参数以及在输入端引入阶梯型无源匹配网络来进一步拓展带宽和降低电路噪声.测试结果表明,在探测器等效电容为300pF时,所设计跨阻放大器芯片的-3d B带宽为2.2GHz,跨阻增益为61.8d B?,平均等效输入噪声电流谱密度仅为9 pA/(Hz)~(1/2),成功实现了2.5Gb/s的传输速率.在1.8V电源电压下,芯片功耗为43m W,包括焊盘在内的芯片总面积为1×1mm~2.  相似文献   

8.
文中采用SMIC 0.18μm CMOS 工艺设计了一款2.4GHz Doherty结构功率放大器。两子功放均采用两级放大结构,提高了功放的功率增益和功率附加效率(PAE)。模拟显示最大功率输出为28.75dBm,对应PAE为43%,功率1dB压缩点输出功率为26.71dBm, 对应PAE为38%。功率增益为24dB。与以往报道的CMOS Doherty功放相比,PAE和功率增益均得到了明显的改善。  相似文献   

9.
研究一种基于超表面的60 GHz 1×2宽带天线阵列.为降低传输损耗,天线阵列由间隙波导功分器馈电,间隙波导传输线两侧放置电磁带隙结构,能量通过缝隙与顶层超表面耦合,从而向空间辐射.天线阵列安装在Rogers 4350b介质基板上,由超表面辐射器引入的准TM30谐振模式与缝隙辐射单元的本征模式结合,从而拓展天线带宽,改善天线增益.研究结果表明:天线阵列-10 dB |S11| 带宽仿真结果为49.3~65.0 GHz,实测结果为48.5~64.8 GHz,覆盖57.0~64.0 GHz范围的无授权毫米波通信频段;在匹配带宽内,天线的最大增益为11.8 dB,3 dB增益带宽为15%.  相似文献   

10.
提出一种采用叠层电感(Stacked Inductor)的25Gb/s 30dB的限幅放大器(Limiting Amplifier,LA),相对于传统限幅放大器,该放大器面积更小.改进的Cherry-Hooper放大器能够解决增益和电压余度(Voltage Headroom)之间的折中问题,因此具有3级级联的该放大器组成了本电路的核心增益级.直流失调消除电路由低通滤波器和放大器组成,同时利用密勒效应实现电容倍增从而节约电容面积.为了在印刷电路板上单独测试LA,将连续时间均衡器以及具有前馈均衡的输出驱动器都集成在本芯片上.该设计采用TSMC 65nm工艺进行流片验证,测试结果表明3dB带宽达到17.5GHz,增益为29.0dB;在电源电压为1.1V的情况下,核心增益级功耗为25.3mW,占用0.072mm2面积.  相似文献   

11.
提出了一种可用于0.1-1.2 GHz射频接收机前端的宽带巴伦低噪声放大器(Balun-LNA).采用噪声抵消技术,输入匹配网络的沟道热噪声和闪烁噪声在输出端被抵消,在宽带内可同时实现良好的输入匹配和低噪声性能.通过分别在输入匹配级内增加共源放大器,在噪声抵消级内增加共源共栅放大器实现单端转差分功能.电路采用电流复用技术降低系统功耗.设计基于TSMC 0.18μm CMOS工艺,LNA的最大增益达到13.5dB,噪声系数为3.2-4.1 d B,输入回波损耗低于-15 d B.在700 MHz处输入1 dB压缩点为-8 dBm,在1.8 V供电电压下电路的直流功耗为24 mW,芯片面积为0.062 5 mm2.  相似文献   

12.
文章利用有损匹配的方法设计了一种覆盖X、Ku波段的宽带低噪声放大器,其工作频率为8~18 GHz,带内功率增益大于32 dB,增益平坦度小于3 dB,输入输出端口的回波损耗S11和S22均优于-7 dB,噪声系数小于2.8 dB,最大输出功率为16 dBm,且具有工作频带宽、输入输出匹配结构简单的特点.  相似文献   

13.
为了在工作频段内获得良好的增益平坦度、隔离度及输入输出匹配,采用在基站驱动级功放设计中引入平衡结构的方法。在研究功放平衡电路结构和工作原理基础上,设计实现了两个工作频段在2 110~2 170 MHz,应用于基站系统的驱动级功率放大器.对功放进行仿真和实际测试,测试结果与仿真结果的高度一致性验证了这种方案的有效性,同时在整个工作频段内功放的增益平坦度都小于±0.5 dB,隔离度小于-27 dB,输入输出匹配参数良好。结果表明:设计的平衡放大器可以很好地应用在基站系统中,从而提高基站功放系统性能。  相似文献   

14.
鉴于传统共源共栅低噪声放大器由于受共栅级的影响.其噪声和线性度都不理想,为此在共栅级上引入一对交叉耦合电容和电感,以消除共栅级的噪声并提高放大器的线性度.采用特许半导体公司0.25μm射频互补金属氧化物半导体工艺进行了设计.仿真结果表明低噪声放大器在2.4 GHz处的噪声系数仪有1.34dB.该电路能够提供17.27 dB的正向增益、小于-38.37 dB的反向传输系数、小于-27.73 dB的输入反射系数、小于-15.85 dB的输出反射系数,该放大器的三阶交调点为0.58 dBm.消耗的功率为11.23 mW.  相似文献   

15.
基于0.13,μm工艺,设计一个用于1.2,V低电压电源的10比特83MSPS流水线模数转换器的两级运算放大器.该放大器采用折叠共源共栅为第一级输入级结构,共源为第二级输出结构.详细介绍了运算放大器的设计思路、指标确定方法及调试中遇到的问题和解决方法.模拟结果显示:该运算放大器开环直流增益可达79.25,dB,在负载电容为2,pF时的单位增益频率达到838 MHz,在1.2,V低电压下输出摆幅满足设计要求,高达1 V,满足了10比特低电压高速度高精度模数转换器的要求.  相似文献   

16.
设计了一个高精度可变增益放大器,采用0.18μm SiGe BiCMOS工艺进行前仿真和后仿真.运用电流反馈型闭环运算放大器获得了高精度的固定电压增益,输出级中加入了共模反馈电路,使得输出共模电压可以由外部控制电压在0.8~1.3 V之间进行调节.另外,先进的补偿网络可以对工艺偏差进行校准,使其带宽达到2 GHz;为了实现增益可调,采用了无源R-xR网络实现步长为2 dB的精确衰减,最终使得增益在数字信号控制下以2 dB步长在-0.93~39.19 dB范围内可调.整个系统结构简单,增益控制方便.  相似文献   

17.
基于GaAs pHEMT 2.5~4.3 GHz驱动功率放大器芯片设计   总被引:1,自引:0,他引:1  
为了实现低噪声、高线性度、中功率的指标特性,设计了一款基于GaAs pHEMT工艺的2.5~4.3 GHz驱动功率放大器(power amplifier,PA),该PA设计采用共源共栅级驱动共源极放大器的双级放大结构,其中共源共栅级驱动放大器可实现良好的隔离度,采用负反馈技术实现输入阻抗匹配和级间阻抗匹配,选取共源极放大器实现高线性度指标。经过流片加工后,实测结果显示,该PA在2.5~4.3 GHz频段可实现25.5±1 dB小信号增益,可以满足5G无线通信系统中Sub-6G频段的典型驱动功率放大器的指标要求,具有广泛的市场应用前景。  相似文献   

18.
在叙述被动毫米波成像特性的基础上提出了一种新型的8mm波段直接检波式接收机设计方案.由于设计过程中采用了直接检波式结构,使得该接收机避免了传统超外差式接收机体积大、结构复杂、需要本振等缺点.通过对该设计方案进行测试,结果显示,每级LNA可获得20dB左右的增益,样机检波前总增益为60dB,噪声系数为3.5~4dB,接收机带宽为30GHz左右,证明了方案的可行性.  相似文献   

19.
基于2 μm CMOS工艺,设计实现了一种2.4 V低功耗带有恒跨导输入级的Rail-to-Rail CMOS运算放大器.采用尾电流溢出控制的互补差分输入级和对称AB类推挽结构的输出级,实现了满电源幅度的输入输出和恒输入跨导;运用折叠共源共栅结构作为中间增益级,实现电流求和放大.整个电路在2.4 V的单电源供电下进行仿真,直流开环增益为76.5 dB,相位裕度为67.6 ,单位增益带宽为1.85 MHz.  相似文献   

20.
提出了一种新型的四自由度陀螺设计方式,结构设计基于科罗奥利效应采用多敏感模态振动单元组合阵列的形式.与传统二自由度陀螺比较,该陀螺阵列在提高增益的同时保持了本身具有的鲁棒性.在四自由度陀螺的设计中,两个具备固有中心频率差值的完全二自由度振动单元被应用在敏感模态中.通过设定中心频率差值,综合考虑了提高陀螺敏感度和稳定性的因素.陀螺阵列通过联合两个敏感模态振动单元的输出,达到提高敏感模态增益和增强系统敏感度的目的.仿真结果表明:与单个敏感模态振动单元相比,陀螺阵列的增益增加了8dB;而且在敏感模态和驱动模态分别产生了220和160Hz范围内的3dB带宽;两个模态的带宽彼此高度匹配,并且为整个系统提供了160Hz的带宽.陀螺阵列对于结构参数的变化和制造误差都有很强的鲁棒性,从而说明该设计能满足实际需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号