首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
杨录峰 《科学技术与工程》2013,13(13):3686-3690
结合预报校正线性多步法与高阶紧致差分格式方法的优点,空间导数采用四阶紧致差分格式进行离散之后,对得到的空间半离散格式采用改进的预报校正的线性多步法进行时间推进,得到一种时空方向均为四阶精度的求解非线性对流扩散方程的高精度方法。数值试验表明该格式可以有效求解非线性对流扩散方程,验证了格式的良好性能。  相似文献   

2.
本研究提出一种有效求解带色散四阶抛物型方程的四阶紧致差分格式。对该方程的空间变量用四阶紧致差分格式进行离散,对离散之后得到的常微分方程组用三次Hermite插值法进行求解,得到一种空间和时间方向上都具有四阶精度的数值格式,并用傅里叶方法证明了该格式的无条件稳定性。数值实验中给出三种类型的算例,并将本研究格式与Crank-Nicolson格式进行数值比较,证明了本研究格式的有效性。结果表明,本研究格式对求解带色散的四阶抛物型方程具有很好的实用性。  相似文献   

3.
本文研究了带有阻尼项的四阶梁振动方程初边值问题,基于紧致差分方法,给出了数值求解该问题的四种高阶紧致差分格式.对方程中的一阶和二阶时间导数项采用中心差分离散,对四阶空间导数项分别采用五点、七点和带紧致的五点、七点四种方法进行离散,得到四种高阶紧致差分格式,这四种格式均在时间方向达到二阶精度,在空间方向分别达到二阶、四阶...  相似文献   

4.
讨论一类非线性抛物积分微分方程的Hermite有限元方法,利用该元的性质,平均值技巧和导数转移技巧,得到了半离散格式的超逼近性质和相应的超收敛结果, 并通过构造一个合适的外推格式得到了具有四阶精度的外推解.  相似文献   

5.
提出一种关于求解分数阶CEV模型下未定权益的紧致差分法.在时间上采用Caputo导数进行离散,在空间上采用4阶紧致差分格式进行离散.针对未定权益,得到一个时间2-α阶,空间4阶精度的紧致差分格式.并且运用傅里叶分析法和数学归纳法验证该方法的稳定性和收敛性.最后,通过数值实验验证该方法的有效性.  相似文献   

6.
针对一维波动方程提出了一种有限差分方法.首先,采用泰勒级数展开公式和原方程代入的方法推导出了第一个时间层未知函数值的四阶紧致差分格式.然后,用四阶紧致差分公式近似空间导数项,采用中心差分格式截断误差余项修正的方法处理时间导数项,推导出了第二个时间层以后未知函数的四阶紧致差分格式.该方法时间和空间具有整体四阶精度.利用Fourier方法分析了所提格式的稳定性.由于本文格式在未知时间层仅涉及3个网格点,因此可采用追赶法求解离散化后所得到的线性方程组.最后,用数值算例验证了本文格式的精确性和稳定性.  相似文献   

7.
用于波动方程计算的高阶精度紧致差分方法   总被引:1,自引:0,他引:1       下载免费PDF全文
研究低耗散低色散的高阶精度紧致差分方法,目的是直接模拟非定常的波动问题.空间导数采用七点六阶以上精度的紧致差分逼近,研究3种空间离散格式:一个通过降低色散(相位)误差得到优化格式CO6,以及标准的五点六阶紧致格式C6和七点八阶精度紧致格式C8;时间推进采用2种四阶精度的Runge-Kutta方法(RK4和RK46).分析比较空间离散格式的有效波数范围、空间-时间全离散格式的误差特性、长距离波传播计算时的累积误差特性.通过对全离散格式的误差等特性的分析比较,对这类格式的应用提出建议.最后,通过流体波动问题算例,验证了该格式计算波动问题的高精度特性.  相似文献   

8.
本文主要研究一维四阶双曲方程初边值问题.首先通过引入一个中间函数将其转化为二阶方程组,然后对方程中的空间导数项采用四阶紧致差分格式离散,时间导数项采用二阶中心差分格式离散,构造出问题的隐式紧致差分格式.数值算例表明该格式具有较好的计算效果.  相似文献   

9.
扩散方程通常用来描述扩散现象中的物质密度的变化或者与扩散相类似的现象,针对二维扩散方程提出了一种高精度紧致差分格式,该格式基于四次样条函数对空间变量进行离散,对时间导数采用(2,2)Padé逼近,从而得到了时间和空间均为四阶精度的紧致差分格式.然后证明了该格式是无条件稳定的.最后通过数值实验,验证方法的精确性和稳定性.  相似文献   

10.
针对一类四阶非线性抛物方程的初边值问题建立紧致差分格式,利用降阶的思想,通过引入中间变量将原四阶问题转化成二阶非线性方程组.对方程中的时间导数项和空间导数项分别采用Crank-Nicolson格式和四阶紧致差分格式进行离散,对非线性项采用外插的方法进行处理,从而得到原问题的三层线性紧致差分格式,其局部截断误差为■.数值算例表明该格式具有良好的计算效果.基于四阶非线性抛物方程在薄膜理论等问题中的重要作用,对此类方程构造高精度的紧致差分格式,可以使该方程在有关工程计算方面得到更好的应用,因此该研究成果具有重要的理论意义和广泛的应用前景.  相似文献   

11.
针对一类非线性偏微分方程,提出了一种新的高精度紧致差分方法.首先对内部网格节点处的空间一阶和二阶导数项采用四阶精度的Padé紧致差分格式进行离散,然后对时间导数项采用泰勒级数展开并使用截断误差余项修正法进行离散,最终得到了求解该非线性方程的一种三层隐式高精度紧致差分格式,其截断误差为O(τ2+τh2+h4),即当τ=O(h2)时,该格式在空间上具有四阶精度.最后通过对广义Burgers-Fisher方程和广义Burgers-Huxley方程的数值求解,验证了本文方法的精确性和可靠性.  相似文献   

12.
陈安宁 《科学技术与工程》2012,12(27):7007-7012
本文介绍了一种基于原始变量的用于求解二维非定常不可压Navier-Stokes方程的高阶紧致格式。这种紧致格式最初是用于计算声学(CAA)的高精度格式,相对于传统的紧致格式,使用该格式的优点在于减少计算量的同时降低了边界模板的处理难度。这种方法建立在非交错网格上,空间离散具有六阶精度。压力Poisson方程基于九基点模板的四阶紧致格式进行离散,超松弛迭代进行求解。时间推进上采用四阶Runge-Kutta方法。为验证该方法的精度和有效性,利用该格式计算了一个具有解析解的问题,以及二维非定常情况下的方腔驱动流动问题,并且和传统的紧致格式进行了计算时间的对比。  相似文献   

13.
针对一维波动方程,空间采用四阶Padé逼近,时间采用中心差分离散得到了一种时间二阶、空间四阶精度的显式紧致差分格式,其截断误差为O(τ~2+h~4).之后采用截断误差余项修正的方法对时间离散进行改进,改进后的格式的截断误差为O(τ~4+τ~2h~2+h~4),即格式具有整体四阶精度.然后,通过Fourier方法分析了2种格式的稳定性.最后,通过数值实验验证了本格式的精确性和可靠性.  相似文献   

14.
对RLW方程提出一个高精度守恒紧致差分格式,所建格式满足离散质量守恒和能量守恒,在时间上为二阶精度,在空间上为四阶精度.用离散能量法证明了所建格式的收敛性和稳定性.数值实验验证了该格式的有效性和可靠性.  相似文献   

15.
针对一维扩散方程,空间采用四阶Padé公式,时间采用广义的梯形公式,差分离散得到了一种时间二阶、空间四阶精度的隐式紧致差分格式,其截断误差为O(τ2+h4).通过理论分析证明了此格式是无条件稳定的.最后通过数值实验验证了格式的精确性和可靠性.  相似文献   

16.
提出了一维扩散反应方程的一种隐式高精度紧致差分格式,空间二阶导数采用四阶紧致差分格式进行离散,时间导数采用四阶向后欧拉公式进行离散,格式截断误差为Oτ4+h4),即时间和空间都可以达到四阶精度,最后通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

17.
该文为耦合Gross-Pitaevskii方程提出了一个新的保质量守恒格式.首先对空间导数利用高阶紧致格式离散得到半离散格式;然后在时间方向上利用基于外推的Crank-Nicolson格式离散,得到一个半显式的数值格式,然而此格式不能保持GP方程固有的质量守恒,因此,对格式得到的数值解利用投影方法进行修正,使其满足离散质量守恒;最后通过数值实验验证了该格式具有高精度以及保持质量守恒.  相似文献   

18.
本文主要讨论了带有界面的一维抛物方程的初边值问题.首先对原方程在控制单元内的积分项在空间上采用四阶紧致格式,然后在时间上采用二阶的差分格式,构造了问题的紧致有限体积格式.数值算例表明该格式具有较好的计算效果.  相似文献   

19.
本文针对一维薛定谔方程的Dirichlet边值问题提出了一种紧致有限体积格式.对于此问题空间方向的离散,通过Tayler展开及Lagrange插值进行处理,而针对时间方向,按照Crank-Nicolson思想进行离散,从而得到了方程的四阶紧致有限体积格式.数值实验证明了格式的正确性与有效性.  相似文献   

20.
对一维Burgers方程提出了精度为O(τ3+h4)的紧致Pade'逼近格式,首先利用Hopf-Cole变换,将一维Burgers方程转化为线性扩散方程,然后对空间变量四阶紧致格式进行离散,时间变量利用pade逼近格式得到求解Burgers方程的时间三阶空间四阶精度的隐式差分格式,并对稳定性进行分析,数值结果与Crank-Nicholson格式、Douglass格式和Haar wavelet格式进行比较,数值结果不同时刻和空间,不同雷诺数与准确值进行比较,发现所提格式很好的解决了Burgers方程的数值计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号