首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Genetic basis of methicillin resistance in Staphylococcus aureus   总被引:5,自引:0,他引:5  
Methicillin resistance in staphylococci is due to the acquisition of the mecA gene encoding a new penicillin-binding protein (PBP2', PBP2a) that has a lower affinity to methicillin than the endogenous PBPs. PBP2' is involved in the assembly of the cell wall peptidoglycan in the presence of high concentrations of beta-lactams that otherwise inhibit the endogenous PBPs. The production of PBP2' is under dual control by its own mecR1-mecI- and the penicillinase blaR1-blaI-encoded regulatory elements. Resistance to high levels of methicillin depends, in addition to PBP2', on chromosomally encoded factors that are involved in the synthesis and degradation of the peptidoglycan. Any mutations that reduce peptidoglycan precursor formation or change the chemical composition of the muropeptide precursor result in lowered resistance.  相似文献   

3.
Staphylococci have two mechanisms for resistance to β-lactam antibiotics. One is the production of β-lactamases, enzymes that hydrolytically destroy β-lactams. The other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by β-lactam antibiotics. Strains of S. aureus exhibiting either β-lactamase or PBP 2a-directed resistance (or both) have established a considerable ecological niche among human pathogens. The emergence and subsequent spread of bacterial strains designated as methicillin-resistant S. aureus (MRSA), from the 1960s to the present, has created clinical difficulties for nosocomial treatment on a global scale. The recent variants of MRSA that are resistant to glycopeptide antibiotics (such as vancomycin) have ushered in a new and disconcerting chapter in the evolution of this organism. Received 2 April 2005; received after revision 15 July 2005; accepted 25 July 2005  相似文献   

4.
Resistant penicillin-binding proteins   总被引:8,自引:0,他引:8  
Low-affinity penicillin-binding proteins (PBPs), which participate in the β-lactam resistance of several pathogenic bacteria, have different origins. Natural transformation and recombination events with DNA acquired from neighbouring intrinsically resistant organisms are responsible for the appearance of mosaic genes encoding two or three low-affinity PBPs in highly resistant strains of transformable microorganisms such as Neisseria and Streptococcus pneumoniae. Methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal strains possess the mecA determinant gene, which probably evolved within the Staphylococcus genus from a closely related and physiologically functional gene that was modified by point mutations. The expression of mecA is either inducible or constitutive. A stable high-level resistant phenotype requires the synthesis of a normally constituted peptidoglycan. Enterococci have a natural low susceptibility to β-lactams related to the presence of an intrinsic low-affinity PBP. Highly resistant enterococcal strains overexpress this PBP and/or reduce its affinity.  相似文献   

5.
Two new enzymes which hydrolyse D-alanyl-p-nitroanilide have been detected in Ochrobactrum anthropi LMG7991 extracts. The first enzyme, DmpB, was purified to homogeneity and found to be homologous to the Dap protein produced by O. anthropi SCRC C1-38 (ATCC49237). The second enzyme, DmpA, exhibits a similar substrate profile when tested on p-nitroanilide derivatives of glycine and L/D-alanine, but the amounts produced by the Ochrobactrum strain were not sufficient to allow complete purification. Interestingly, the DmpA preparation also exhibited an L-aminopeptidase activity on the tripeptide L-Ala-Gly-Gly but it was not possible to be certain that the same protein was responsible for both p-nitroanilide and peptide hydrolysing activities. The gene encoding the DmpA protein was cloned and sequenced. The deduced protein sequence exhibits varying degrees of similarity with those corresponding to several open reading frames found in the genomes of other prokaryotic organisms, including Mycobacteria. None of these gene products has been isolated or characterised, but a tentative relationship can be proposed with the NylC amidase from Flavobacterium sp. K172. Received 7 December 1998; received after revision 15 March 1999; accepted 22 March 1999  相似文献   

6.
In Escherichia coli protein quality control is carried out by a protein network, comprising chaperones and proteases. Central to this network are two protein families, the AAA+ and the Hsp70 family. The major Hsp70 chaperone, DnaK, efficiently prevents protein aggregation and supports the refolding of damaged proteins. In a special case, DnaK, together with the assistance of the AAA+ protein ClpB, can also refold aggregated proteins. Other Hsp70 systems have more specialized functions in the cell, for instance HscA appears to be involved in the assembly of Fe/S proteins. In contrast to ClpB, many AAA+ proteins associate with a peptidase to form proteolytic machines which remove irreversibly damaged proteins from the cellular pool. The AAA+ component of these proteolytic machines drives protein degradation. They are required not only for recognition of the substrate but also for substrate unfolding and translocation into the proteolytic chamber. In many cases, specific adaptor proteins modify the substrate binding properties of AAA+ proteins. While chaperones and proteases do not appear to directly cooperate with each other, both systems appear to be necessary for proper functioning of the cell and can, at least in part, substitute for one another. RID="*" ID="*"Corresponding author.  相似文献   

7.
Recent discoveries revealing that carbohydrate modifications play critical roles in a wide variety of biological processes have brought wide recognition to the field of glycobiology. Growing attention has focused on the function of unusual O-linked carbohydrate modifications such as O-fucose. O-fucose modifications have been described in several different protein contexts, including epidermal growth factor-like repeats and thrombospondin type 1 repeats. The O-fucose modifications on thrombospondin type 1 repeats have only recently been described, but the site of modification occurs in a region proposed to play a role in cell adhesion. O-fucose modifications on epidermal growth factor-like repeats have been described as important players in several signal transduction systems. For instance, Notch, a cell-surface signaling receptor required for many developmental events, bears multiple O-fucose saccharides on the epidermal growth factor-like repeat of its extracellular domain. The O-fucose moieties serve as a substrate for the β1,3 N-acetylglucosaminyltransferase activity of Fringe, a known modifier of Notch function. The alteration of O-fucose structures by Fringe influences the ability of Notch ligands to activate the receptor and provides a means to regulate Notch signaling. Thus, O-fucose and Fringe provide a clear example of how carbohydrate modifications can have direct functional consequences on the proteins they modify. RID="*" ID="*"Corresponding author.  相似文献   

8.
Substrates for studies of the interactions of attached cells with extracellular matrix components are often prepared by allowing a protein to adsorb from solution onto a glass or polystyrene substrate. This method is simple and effective for many studies, but it can fail in cases that require rigorous control over the structure and composition of adsorbed protein. Self-assembled monolayers formed by the spontaneous ordering of terminally functionalized alkanethiols onto a gold substrate are a class of well-ordered substrates and provide a convenient method for tailoring substrates with ligands, proteins and other groups. Methods that can pattern the monolayers provide a general strategy to create substrates that control the size, shape and spacing of attached cells. This review illustrates recent work that has used these methods of surface chemistry to create tailored substrates for studies in cell biology. Received 14 November 1997; received after revision 10 March 1998; accepted 10 March 1998  相似文献   

9.
MDA-MB-468 is a human mammary adenocarcinoma cell line that overexpresses the epidermal growth factor (EGF) receptor and undergoes programmed cell death (apoptosis) in response to EGF treatment. Programmed cell death was shown to be greatly enhanced when cells were growth-arrested prior to EGF treatment. Apoptosis was characterized by an initial rounding up and detachment of the cells from their substrate starting about 12 h after EGF treatment, followed by chromatin condensation, nuclear fragmentation and oligonucleosomal fragmentation of the DNA at about 24 to 48 h. Cell death was dependent on de novo protein synthesis. We found a rapid induction of c-fos, c-jun and junB at the mRNA level after about 30 min of EGF treatment and a more delayed upregulation of fosB and fra-1. The junD gene was expressed in the absence of EGF, and it was moderately induced within 30 min of growth factor addition. The increase of the different fos and jun mRNAs were paralleled by an increase of activator protein-1 (AP-1) DNA binding activity. A characterization of the AP-1 complex revealed similar levels of several Fos and Jun proteins. Based on the kinetics of AP-1 accumulation and cell death, it seems likely that AP-1 contributes to the apoptotic cell death of EGF receptor-overexpressing MDA-MB-468 cells. Received 21 July 1997; received after revision 6 November 1997; accepted 6 November 1997  相似文献   

10.
Summary By means of a technic published in this journal (2, 66 [1946]), it has been observed that the activity of the pseudo-choline esterase of the serum is highest in presence of high concentrations of acetylcholine.The true choline esterase of the red corpuscules has her optimal activity at concentrations of 200 mg % acetylcholine. This high activity of these choline esterase is only going on during 3 to 5 minutes; after this period an inhibition occurs. At lower substrate concentrations (50 mg % acetylcholine) the difference in activity in the first and second phase is becoming less pronounced and the curve of the choline esterase activity becomes a straight line. At the small substrate concentration (4 mg % acetylcholine) again a primary higher choline esterase activity has been observed.Choline inhibitsin vitro the activity of the choline esterase. Prostigmine inhibits alsoin vivo andin vitro, the choline esterase of serum and globules.  相似文献   

11.
Factor XIII subunit A of blood coagulation (FXIII-A) is known to be synthesized but not secreted by the monocyte/macrophage cell line. On the basis of its intracellular localization and substrate profile, FXIII-A is thought to be involved in certain intracellular processes. Our present study was designed to monitor the changes in FXIII-A gene expression and protein production in long-term culture of human monocytes during their differentiation into macrophages in the presence of activating agents (interleukin-4, interferon-γ, Mycobacterium bovis BCG) inducing classical and alternative activation pathways. By using quantitative RT-PCR and fluorescent image analysis at the single-cell level we demonstrated that the expression of FXIII-A both at the mRNA as well as at the protein level is inversely regulated during the two activation programmes. Here we conclude that FXIII-A expression is an intracellular marker for alternatively activated macrophages, while its absence in monocyte-derived macrophages indicates their classically activated state.Received 2 June 2005; received after revision 12 July 2005; accepted 22 July 2005  相似文献   

12.
Chs5p is a component of the exomer, a coat complex required to transport the chitin synthase Chs3p from the trans-Golgi network to the plasma membrane. The Chs5p N-terminal region exhibits fibronectin type III (FN3) and BRCT domains. FN3 domains are present in proteins that mediate adhesion processes, whereas BRCT domains are involved in DNA repair. Several fungi—including Schizosaccharomyces pombe, which has no detectable amounts of chitin—have proteins similar to Chs5p. Here we show that the FN3 and BRCT motifs in Chs5p behave as a module that is necessary and sufficient for Chs5p localization and for cargo delivery. The N-terminal regions of S. cerevisiae Chs5p and S. pombe Cfr1p are interchangeable in terms of Golgi localization, but not in terms of exomer assembly, showing that the conserved function of this module is protein retention in this organelle and that the interaction between the exomer components is organism-specific.  相似文献   

13.
Streptomyces cacaoi -lactamase genes are controlled by two regulators named blaA and blaB. Whereas BlaA has been identified as a LysR-type activator, the function of BlaB is still unknown. Its primary structure is similar to that of the serine penicillin-recognizing enzymes (PREs). Indeed, the SXXK and KTG motifs are perfectly conserved in BlaB, whereas the common SXN element found in PREs is replaced by a SDG motif. Site-directed mutations were introduced in these motifs and they all disturb -lactamase regulation. A water-soluble form of BlaB was also overexpressed in the Streptomyces lividans TK24 cytoplasm and purified. To elucidate the activity of BlaB, several compounds recognized by PREs were tested. BlaB could be acylated by some of them, and it can therefore be considered as a penicillin-binding protein. BlaB is devoid of -lactamase, D-aminopeptidase, DD-carboxypeptidase or thiolesterase activity.Received 13 January 2003; received after revision 9 April 2003; accepted 11 April 2003  相似文献   

14.
The origin of the high affinity progesterone binding protein (PBP) occurring during pregnancy in the guinea pig serum has been investigated. An indirect immunofluorescence technique has been developed using a specific antiserum raised in rabbits. An accumulation of PBP-like immunofluorescent material was detected in the trophoblastic syncytium of the placenta tissue, whereas all other examined pregnant guinea pig organs gave negative reactions. It is concluded that this placental accumulation of immunoreactive PBP-like material may express a placental biosynthesis of this glycoprotein.  相似文献   

15.
The mitogen-activated protein kinase-activated protein kinase MK5 is ubiquitously expressed in vertebrates and is implicated in cell proliferation, cytoskeletal remodeling, and anxiety behavior. This makes MK5 an attractive drug target. We tested several diterpenoid alkaloids for their ability to suppress MK5 kinase activity. We identified noroxoaconitine as an ATP competitor that inhibited the catalytic activity of MK5 in vitro (IC50 = 37.5 μM; K i = 0.675 μM) and prevented PKA-induced nuclear export of MK5, a process that depends on kinase active MK5. MK5 is closely related to MK2 and MK3, and noroxoaconitine inhibited MK3- and MK5- but not MK2-mediated phosphorylation of the common substrate Hsp27. Molecular docking of noroxoaconitine into the ATP binding sites indicated that noroxoaconitine binds more strongly to MK5 than to MK3. Noroxoaconitine and derivatives may help in elucidating the precise biological functions of MK5 and may prove to have therapeutic values.  相似文献   

16.
The stably transfected rat cell line HR24 expressing high levels of the inducible human hsp70 and its parental cell line Rat-1 were used for in vivo studies to analyse the role of hsp70 during thermal protein denaturation and the subsequent renaturation. In order to monitor denaturation and renaturation of a cellular protein in vivo, both cell lines were transiently transfected with firefly luciferase (Luc). The continuous monitoring of Luc activity during and after heat stress allowed a detailed analysis of the inactivation and reactivation kinetics in cells grown in monolayers. The aim of these studies was to distinguish a protective effect of increased hsp70 levels during heat shock-induced protein inactivation from a stimulation of reactivation. In this paper we show that in cells that are stably transfected with hsp70, thermal Luc inactivation decreased, and subsequent reactivation yielded higher activity levels, compared with the parental cells. The difference in early inactivation kinetics observed in the two cell lines suggests an immediate effect of the presence of an extra amount of hsp70 on enzyme inactivation. Using different mathematical models, the heat-induced inactivation and reactivation kinetics was compared with simulations of denaturation and renaturation. It is concluded that the model in which it is assumed that hsp70 is able to interact with partially denatured proteins, which did not yet lose their enzymatic activity, most optimally explains the experimental observations. Received 2 December 1998; received after revision 19 February 1999; accepted 18 March 1999  相似文献   

17.
The product of the MDR1 gene (P-gp) has been implicated in the transport of cholesterol from plasma membrane to endoplasmic reticulum for esterification. In previous studies on leukemia cell lines, we suggested that cholesterol esterification may regulate the rate of cell growth and that the MDR1 gene might be involved in this process by modulating intracellular cholesterol esters levels. To further investigate this matter, the rate of cell growth, cholesterol metabolism, expression of the MDR1 gene, and P-gp activity were compared in KB cell lines displaying differences in expression and function of P-gp (drug-sensitive phenotype versus MDR phenotype). The rate of cell growth correlated with cholesterol esterification in all KB cell lines, whereas the over-expression of MDR1 observed in the MDR cell lines was not always associated with an increased capacity of cells to esterify cholesterol. Two known inhibitors of P-gp activity, progesterone and verapamil, strongly inhibited both cholesterol esterification and cell proliferation in all KB cell lines, but they affected intracellular accumulation of labeled vinblastine only in MDR cell lines. These results further support a role for cholesterol esters in the regulation of cell growth and suggest that the P-gp expressed in MDR KB cells is not involved in the general process leading to cholesterol esterification. Received 14 February 2000; received after revision 10 April 2000; accepted 8 May 2000  相似文献   

18.
Cellular and molecular aspects of drugs of the future: meropenem   总被引:1,自引:0,他引:1  
Meropenem, first synthesized in the late eighties, has become one of the most important beta-lactam antibiotics of the carbapenem subclass used for the treatment of a variety of life-threatening infections. Due to its unique chemical structure, meropenem is not inactivated by the kidney dehydropeptidase I and the majority of microbial beta-lactamases. Its antimicrobial activity is based on its high affinity for the majority of cell wall-synthesizing enzymes, the so-called penicillin-binding proteins, of Gram-positive and -negative bacteria. However, bacteria have evolved several approaches to resist meropenem: (i) by reducing the affinity of the penicillin-binding proteins for the antibiotics, (ii) by decreasing the permeability of the outer membrane of Gram-negative bacteria, (iii) by using efflux pumps, and (iv) by activating zinc-dependent carbapenemases. Meropenem has a low toxicity profile and, in contrast to imipenem, no central nervous system toxicity.  相似文献   

19.
Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant to these antibiotics because they produce a PBP, named PBP5fm in Enterococcus faecium, with low-level affinity for beta-lactams. We report here the crystal structure of the acyl-enzyme complex of PBP5fm with benzylpenicillin at a resolution of 2.4 A. A characteristic of the active site, which distinguishes PBP5fm from other PBPs of known structure, is the topology of the loop 451-465 defining the left edge of the cavity. The residue Arg464, involved in a salt bridge with the residue Asp481, confers a greater rigidity to the PBP5fm active site. In addition, the presence of the Val465 residue, which points into the active site, reducing its accessibility, could account for the low affinity of PBP5fm for beta-lactam. This loop is common to PBPs of low affinity, such as PBP2a from Staphylococcus aureus and PBP3 from Bacillus subtilis. Moreover, the insertion of a serine after residue 466 in the most resistant strains underlines even more the determining role of this loop in the recognition of the substrates.  相似文献   

20.
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein–protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号