首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考虑下面高阶摄动方程解u(x,t)的LpLp′估计:tu+(-Δ)mu+V(x)u=0,u(x,0)=0,ut(x,0)=f(x),{x∈Rn,n>3m.假设势函数V(x)和初值f(x)具紧支集,V(x)是小势,则上面问题的解满足‖u(·,t)‖p′≤ct-d‖f‖p,t>0,这里m≥1,d=nm(1p-1p′)=1,1p+1p′=1,m2n≤1p-12<mn.  相似文献   

2.
本文研究如下具有色散的反应扩散方程组ut=DΔu-γu+Σnj=1Bj(x)uxj+f(u),x∈Ω,t>0,u(x,t)=0,x∈Ω,t>0,u(x,0)=u0(x),x∈Ω.(1)其中Ω是Rn中的有界开集且具有光滑的边界Ω,u=(u1,…...  相似文献   

3.
考虑一般二维非线性奇异抛物问题ut - 1p (x) x (p (x ) ux ) - 2 uy2 = f(x,y,t,u(x,y,t)),(x,y,t) ∈ Ω× (0, T〕u(x,y,t)|Γ = 0, ux |Γ0 = 0,(x,y,t) ∈ Ω× (0, T〕u(x,y,0) = u0 (x,y),(x,y) ∈ Ω的对称有限元方法,给出了半离散格式和全离散格式的有限元解的加权 L2 模和加权 H 1 模误差估计,并对全离散格式进行了线性化修正  相似文献   

4.
一般二维非线性奇异问题的有限元方法   总被引:1,自引:1,他引:1  
考虑如下一般二维非线性奇异边值问题Lpu=-1p(x)x(p(x)ux)-2uy2=f(x,y,u(x,y)),(x,y)∈Ω,u|Γ=0,ux|Γ0=0{的有限元方法.给出相应问题广义解的存在唯一性及先验估计,并使用对称有限元法,证明有限元解的收敛性,给出了加权L2模和加权L∞模误差估计  相似文献   

5.
获得了具偏差变元非线性双典型方程2ut2+p(x,t)u(x,t)+∑ki=1pi(x,t)fi(u(x,τi(t))=a(t)△u+∑mj=1aj(t)△u(x,σj(t)),(x,t)∈Ω×(0,∞)≡G,的解振动的充分条件.其中Ω是Rn中具逐片光滑边界的有界区域.  相似文献   

6.
本文讨论一类二阶非线性抛物型偏微分方程初边值问题的奇摄动解法,设Lεu=δu/δt-〔εΣ↑n↓ij=1δij(x,t)δ^2u/δxiδxj+Σ↑n↓i=1bi(x,t)δu/δxi+C(x,t,u)〕=0 u(x,t,ε)│t=0=u(x,0,t)=μ(x,ε),x∈B↑- u(x,t,ε)│s=h(x,t,ε)│s(x,t)∈S其中ε〉0是小参数,给出了上述问题的解的渐近展开式。利用比较定理  相似文献   

7.
引入双线性泛函,利用积分方程技巧得出了Baskakov-Kantorovich算子在Lp[0,∞]关于阶1/n和平凡类T={f│f=const}是Lp饱和的,饱和类的为Sp={f│f∈Lp[0,∞),φ^2(x)f″(x)∈Lp[0,∞)(1〈p〈∞}。  相似文献   

8.
对于如下奇异动力系统:D是含原点的R2中的区域,u=(u1,u2),V=V(t,u)∈C1(R1×(D-{0},R1),且V(t+T,u)=V(t),Vu=graduV(t,u)=(V/u1,V/u2),本文讨论了具有奇异位势(即limV(t,V)=-∞)的二阶动力系统的小周期解的存在性问题:u¨+Vu(t,u)=0。  相似文献   

9.
本文给出了如下定义的乘积空间Rn×Rm上一类带粗糙核的Marcinkiewiez积分算子μΩ(f)的L2(Rn×Rm)有界性:μΩ(f)(x,y)=(∫∞0∫∞0|Ft,s(x,y)|2dtdst3s3)12,这里Ft,s(x,y)=|x-u|≤t|y-v|≤sΩ(x-u,y-v)|x-u|n-1|y-v|m-1f(u,v)dudv且Ω(x′,y′)为文献[8]中建立的积域Sn-1×Sm-1上的一类block-空间中的函数。这一结果是这类带粗糙核的积分算子在单参数下p=2时结果的改进和扩充。  相似文献   

10.
讨论下面方程的Cauchy问题:utt-Δu=|ut(x,t)|p,t≥0,x∈R3,u(x,0)=εf(x),ut(x,0)=εg(x),x∈R3,这里Δ=∑3i=12x2i,常数p>1,ε是正参数,H.Takamura(ComminPDE,1992,17(1&2):189)猜侧上面的Cauchy问题在p>2时是否对充分小的初值存在整体C2解.本文将在f(x),g(x)满足一定条件下在p>3时部分回答这个问题  相似文献   

11.
引入双线性泛函,利用积分方程技巧得出了BaskakovKantorovich算子在Lp[0,∞)关于阶1n和平凡类T={f|f=const}是Lp饱和的,饱和类为Sp={f|f∈Lp[0,∞),φ2(x)f″(x)∈Lp[0,∞)(1<p<∞)}.  相似文献   

12.
利用禁值型论证法,在某些较一般的条件下,建立了形如-Δu=f(x,u),x∈Ω,u=0,x∈Ω{的Dirichlet问题非负解的存在性,Ω是Rn(n≥1)中的有界域,边界Ω适当光滑  相似文献   

13.
该文给出了如下定义乘积空间Rn×Rm上一类带粗糙核的Marcinkiewicz积分算子μΩ,b(f)的L2(Rn×Rm)有界性:μΩ,b(f)(x,y)=(∫∞0∫∞0|Fb,t,s(x,y)|2dtdst3s3)1/2,这里,Fb,t,s(x,y)=|x-u|≤t|y-v|≤sΩ(x-u,y-v)b(|x-u|,|y-v|)|x-u|n-1|y-v|m-1f(u,v)dudv,且Ω为原子Hardy空间H1a(Sn-1×Sm-1)中的函数,b为空间l∞(Lq(R+×R+)中的径向函数  相似文献   

14.
本文讨论奇摄动二阶积分微分差分方程的边值问题:εx″(t)=f(t,x(t),[Tx](t),x(t-τ),x′(t),ε)t∈[0,1]x(t)=φ(t),t∈[-r,0]x(1)=A{的解的存在性,并给出了解的渐近估计式.  相似文献   

15.
记Sn- 1 为n(n ≥3) 维欧氏空间Rn 中的n - 1 维单位球面,Xp (Sn- 1) 为Sn- 1 上的p(1 ≤p ≤∞) 幂可积函数空间,或连续函数空间,并记Δ= {g(x)|g,Δg ∈Xp (Sn- 1)},Δf = ni= 12g(x)xi2 ||x|= 1,g(x) = f( x|x|).作K 泛函K(f,δ)p = infg∈Δ{‖f - g‖p + δ‖g‖Δ}以及Besov 空间(Xp ,Δ)θ,q(0 < θ< 2,1 ≤q ≤∞),则有下面的(i),(ii) 为等价的:(i) f ∈(Xp ,Δ)θ,q; (ii) [∞v= 1(vθ‖Jv,s(f) - f‖p)q 1n ]1q < + ∞当q= ∞时,f ∈(Xp ,Δ)θ,∞‖Jv,s(f)- f‖p = O(v- θ),其中Jv,s(f)为球面Jackson 平均。  相似文献   

16.
无界域上Schroedinger型方程的整体吸引子   总被引:1,自引:0,他引:1  
本文证明了Schrodinger型方程δtu=(k+iβ)Δu-│u│^ρu-λu-g,u(x,0)=u0。其中u=u(x,t),g=g(x),k〉0,ρ〉0,λ〉0,x∈R^n在加权Sobolev空间中强和弱吸引子的存在性,并对吸引子的分形维数也给出了估计。  相似文献   

17.
讨论Banach空间中常微分方程Cauchy问题的近似解与解的关系,得到一个Cauchy问题的近似解与解的关系的定理:定理设f_n∈C[R_0,E](n≥1),f∈C[R_0,E],序列{f_n}在R_0上一致收敛于f;又设0<α≤a,x_n∈C ̄1[[t_0,t_0+α],B(x_0,b)],且满足Cauchy问题x'_n(t)=f_n(t,x_n(t))x_n(t_0)=z_n其中t∈[t_0,t_0,t_0+α],n=1,2,…,z_n∈E,z_n→x_0(n→∞),如果x_n(t)在[t_0,t_0+α]上一致收敛于x(t),则x∈C ̄1[[t_0,t_0+α],B(x_0,b)],且对t∈[t_0,t_0+α],有x'(t)=f(t,x_n(t))x(t_0)=x_0  相似文献   

18.
本文讨论带非线性边界条件的抛物型方程组ut = Δu m ,vt = Δvm ,x ∈Ω,t > 0 ,un = upvq ,vn = urvs ,x ∈Ω,t > 0 ,u( x ,0) = u0( x) ≥δ> 0 ,v( x ,0) = v0( x) ≥δ> 0 ,x ∈珚Ω. ( Ⅰ)解的整体存在性。其中m 、p 、q 、r 、s 均为正数,Ω I R N 是有界光滑区域。δ> 0 可以充分小。利用熟知的上、下解方法,得到关于问题( Ⅰ) 整体解存在的二个充分条件。  相似文献   

19.
本文讨论了初值问题{δu/δt-1/tΔu=u^r t〉ε0〉0 x≤R^n(0.1) u(ε0,x)=(x) x∈R^n(0.2)其中γ≥1,ψ(x)连续有界,且ψ(x)≥0但不恒为零。我们证明了当1/γ-1≥n/2时,初值问题(0.1)(0.2)的非负解必在有限时间blow-up。即问题(0.1)(0.2)在1/γ-1≥n/2时没有非负的整体解。  相似文献   

20.
对n 维非自治系统 x= f(t,x) + g(t,x) + H(t)其中x ∈ Rn,f(t,x),g(t,x ) 是定义在 I(0 ≤ t< + ∞) × Rn 上的n 维连续向量函数,且f(t + ω,x) =f(t,x),g(t + ω,x) = g(t,x), H(t) 是 n × 1 矩阵且 H(t + ω) = H(t),常数 ω> 0,f(t,x) 对x 具有一阶连续的偏导数,g(t,x) 关于 x 满足 Lipschitz 条件。利用矩阵测度的性质,通过建立对线性系统解的估计形式,得到了这类系统平稳振荡的充分判据。给出的例子表明,本文的方法简捷明了。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号