首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
机匣处理对离心压气机激波与泄漏涡干涉的影响   总被引:1,自引:0,他引:1  
跨声速离心压气机间隙泄漏涡与激波相互干涉对压气机性能有重要影响.采用CFD方法对设计的跨声速离心压气机进行数值模拟,分析了激波与间隙泄漏涡的相互作用,研究了自循环机匣处理开缝位置对激波/间隙泄漏涡干涉的影响.结果表明:导风轮叶尖泄漏涡与激波干涉是压气机失速的重要诱因;机匣处理开缝位于分流叶片附近可扩大堵塞流量,开缝位于主叶片前缘附近可改善小流量时压气机特性;较大气体回流量可增加叶轮进口轮缘附近气流的正预旋,降低叶轮进口相对马赫数,减弱流道激波和叶尖泄漏涡;流经机匣处理槽的气流量较小时,具有微喷气或吸气效应,能抑制间隙泄漏涡,推迟压气机失稳.  相似文献   

2.
为研究叶尖间隙对级环境下压气机气动性能的影响,以带导叶的超音压气机级为研究对象,采用商用软件NUMECA对该压气机在转子叶尖间隙为0、0.3、0.6、0.9 mm时进行三维数值计算,分析了该压气机级气动性能及流动特点.结果表明:随着叶尖间隙的增大,转子叶尖处激波向上游移动;静子进口气流攻角增大,最终导致压气机稳定工作裕...  相似文献   

3.
以跨声速压气机转子Rotor37为研究对象,采用商业软件NUMECA数值研究了单槽处理机匣的轴向位置对于压气机性能及内部流场的影响。周向槽处理机匣的宽度为3 mm,深度为10倍叶尖间隙,即3.56 mm,起始位置分别位于轮缘机匣尖部型面的10%、20%、30%、40%、50%相对弦长处。数值计算结果表明:原始光壁压气机转子的失速原因为叶尖泄漏流动引发的低速区对于尖部叶片通道的堵塞,其稳定工作裕度为14.74%。采取的周向槽机匣处理能够改变转子叶尖流动堵塞状况。当机匣处理起始位置位于30%相对弦长时,压气机转子稳定工作裕度的提升量最大,相比原始压气机转子的稳定裕度提高了1.86%。  相似文献   

4.
高国荣  强艳 《科学技术与工程》2021,21(20):8680-8687
为研究叶尖间隙对压气机非设计转速性能特性与稳定边界的影响,以某大涵道比涡扇发动机的十级高压压气机为研究对象,在高转速压气机试验器上开展了试验研究.采用精细化的级间参数测量,以揭示叶尖间隙影响多级压气机级间匹配的机理.结果 表明:叶尖间隙增大后,压气机非设计转速的流量减小、效率降低,且间隙对气动稳定性有显著影响,压气机的前面级未出现压比降低的情况,后面级做功能力明显降低,间隙影响主要集中在叶高80%截面以上,使得压气机更容易进入失速状态.  相似文献   

5.
跨声速离心压气机叶尖区旋涡流动特征   总被引:4,自引:0,他引:4  
车用增压器高压比的发展趋势,使得跨声速离心压气机叶尖区流动对气动性能影响更为重要.采用三维CFD方法,研究了跨声速离心压气机叶尖区流动对性能的影响.结果表明:额定、近失速和堵塞工况的激波呈现多样性;额定和近失速工况主叶片前缘发出的泄漏涡与相邻主叶片压力面相撞分裂成两支,堵塞工况主叶片的泄漏涡出现在压力面侧;3种工况分流叶片泄漏涡与主叶片的泄漏涡均在同一通道流出叶轮;1/2主叶片弦长之后,3工况的分离旋涡与通道涡的尺度和分布特征基本相同,叶片吸力面与机匣相交的角区形成高损失核心区.对激波结构和旋涡特征的分析有助于认识叶轮内损失分布规律和产生损失的机理.  相似文献   

6.
为探究附面层抽吸对跨声速压气机转子内部流动状态及气动性能的影响,利用数值方法对其进行模拟研究.针对压气机转子上端壁激波及泄漏涡等复杂流动结构带来的流动损失做附面层抽吸处理,抽吸流量为主流2%,抽吸位置在上机匣处.分别讨论3种不同抽吸方案,最终改型方案效率最高提升2.05%,压比最多提升3.34%.结果表明,在合适的机匣位置进行大流量抽吸,能够很好地改善跨声速压气机转子内部流动状态,提高转子气动性能.  相似文献   

7.
叶尖间隙对民用大涵道比跨音速压气机性能的影响   总被引:1,自引:0,他引:1  
以某民用大涵道比涡扇发动机高压压气机进口级为研究对象,数值研究了叶尖间隙对进口级高负荷跨音速转子叶片气动性能的影响。数值结果表明:随着叶尖间隙值增加,流量-压比与流量-效率特性线向左下方偏移,最大流量、最高压比、峰值效率逐渐降低;存在间隙对该跨音转子性能影响不敏感的范围值0mm~0.3mm;当间隙值大于0.3mm,最大流量的减小与间隙的增大呈现出近似的线性关系,最高压比和峰值效率急剧下降;间隙从0.3mm增加至1.0mm,转子总压损失增大了41%;叶尖泄漏流与通道激波相互作用,泄漏流穿过激波后在叶片压力面侧形成较大的高熵值损失区域,当叶尖间隙增大到1.0mm,泄漏流平行额线方向流动,使得贴近前缘的激波变得不明显;叶尖泄漏流对叶片通道主流的影响集中在叶高80%以上区域。  相似文献   

8.
为揭示不同叶顶几何形状对压气机叶栅间隙泄漏流动的影响,以压气机平面叶栅作为研究对象,应用数值模拟方法,采用6种不同的叶顶几何形状对比研究泄漏涡的变化.结果表明,合理的叶顶几何形状可以在一定程度上降低叶尖损失,不同叶尖几何方案对于改善气流偏转、提高叶栅流通能力有较好效果.吸力面全部片削叶顶对调控叶尖损失、改善叶栅性能效果最为显著.  相似文献   

9.
叶片前缘倾掠对离心叶轮气动性能的影响   总被引:1,自引:0,他引:1  
为了研究叶片前缘倾掠对离心叶轮气动性能及稳定工况范围的影响,在叶片前缘处沿子午面弦长方向进行叶尖前掠、叶尖后掠、叶根前掠、叶根后掠,实现了4种不同的叶片前缘倾掠。研究结果表明,对跨声速离心叶轮,叶尖前掠和叶根前掠可提高叶轮最高等熵效率和压比;叶尖后掠对叶轮等熵效率影响很小,但可降低叶轮压比;叶根后掠使叶轮等熵效率和压比均有所降低。同时,叶尖前掠和叶根后掠可提高其失速裕度,叶尖后掠和叶根前掠则可减小其失速裕度。为了便于比较,还研究了一个亚声速叶轮。研究发现,与跨声速叶轮相比,叶片前缘倾掠对亚声速叶轮的等熵效率和压比影响更小,但对失速裕度的影响和跨声速叶轮相似。对跨声速叶轮,叶尖前掠是提高其等熵效率、压比和失速裕度的一种有效方法。  相似文献   

10.
采用数值模拟方法,对一台典型轴流压气机级进行提升压气机效率和喘振裕度的叶尖间隙处理研究,除了采用斜沟槽和梯状间隙处理外,还设计了一种新颖的斜坡槽结构。研究表明:斜沟槽和梯状间隙在叶尖前端凸台附近和叶尖中部均分别存在一个回流区,其中梯状间隙对应的后台阶上游出现额外的高熵增区域;斜坡槽可以消除叶尖前端凸台处的回流区,对斜坡槽最高点轴向位置优化后可以减小叶尖中部回流区,进一步降低损失。当斜坡槽前端径向高度为0.2 mm,叶尖前缘与斜坡槽起点高度齐平,斜坡最高点后移至叶尖前缘下游6%叶尖轴向弦长位置时,压气机设计点效率较光壁原型上升了0.12%,喘振裕度提高了8.3%。  相似文献   

11.
跨音速压气机间隙流与处理机匣相互作用分析   总被引:6,自引:0,他引:6  
基于对压气机转子顶部间隙泄漏流的深刻认识,针对某跨音速轴流压气机转子,设计了一种新型的处理机匣结构,并对带处理机匣的压气机转子内部流动进行了全三维非定常数值模拟,数值计算所获得的总性能(实壁)与试验结果符合较好.该种新型处理机匣结构的引入能在不降低压气机设计点效率的前提下有效地提高压气机的失速裕度.对处理机匣与顶部间隙泄漏流之间的相互作用机制进行了详细分析.结果表明:处理机匣结构能抑制间隙泄漏涡破裂现象的发生,并将间隙泄漏涡破裂后导致的阻塞区抽吸进入处理槽,从而有效地提高了跨音速压气机的失速裕度.  相似文献   

12.
采用人工可压缩性方法对具有叶顶间隙的轴流叶栅内湍流流动进行了数值模拟.结果表明,叶顶间隙的减小使间隙涡产生过程延缓,强度的衰减速度增大,作用范围减小;间隙涡涡核沿流动方向由吸力面侧逐渐向压力面侧移动,叶项间隙存在使叶片表面压力系数有所降低,在叶尖附近降低尤为显著,随间隙减小叶片中间区域及根部受间隙的影响较小;间隙的存在导致主流速度明显降低,叶尖附近的二次流速度明显增大,尤其当间隙为2%~5%的弦长.  相似文献   

13.
以主叶片及分流叶片叶顶间隙相同的离心压气机为原型,采用数值方法,对比分析了增大主叶片叶顶间隙同时减小分流叶片叶顶间隙,以及减小主叶片叶顶间隙的同时增加分流叶片叶顶间隙这两种间隙非谐方案对于离心压气机性能的影响.在此基础上,基于离心压气机内部非定常流动参数,结合FW-H方程进行了离心压气机内部离散噪声分析,研究了间隙非谐对离心压气机离散噪声的影响.结果表明,适当减小主叶片叶顶间隙,增大分流叶片叶顶间隙,可以在保持压气机性能的基础上有效降低压气机离散气动噪声.   相似文献   

14.
以大涵道比涡扇发动机系列的十级高压压气机为研究对象,在压气机部件、核心机及整机平台上详细开展了压气机叶顶间隙变化规律及其对气动性能影响的试验研究,同时结合叶顶间隙对跨音级、高亚音级和低亚音级的仿真验证,得到了压气机不同级对叶顶间隙的性能敏感区,进而揭示了叶顶间隙影响多级压气机整机性能的机理。结果表明:不同尺寸的压气机叶顶间隙变化规律具有一致性,经验证主要和离心力及温度场相关。间隙增大后压气机设计转速下的流量压比特性和流量效率特性均整体下降,尤其后面级间隙对气动性能有显著影响。随着叶顶间隙的增大,压气机的跨音级因叶展较高叶顶间隙与叶展比较小,未出现效率突降的情况,但是后面亚音级做功能力明显降低,间隙影响主要集中在后面级即亚音级,使得压气机典型工况的效率和裕度均有所下降。  相似文献   

15.
透平动叶顶部间隙流的端壁二次流结构研究   总被引:8,自引:0,他引:8  
对不同动叶顶部间隙的Aachen一级半轴流透平内部流动进行了数值模拟,以二次速度矢量和周向平均气流角的分布为依据,分析了间隙流、间隙涡与动叶顶部通道涡掺混的方式及其对二次流结构的影响.结果表明:较大的间隙尺寸导致间隙涡较早产生;间隙涡在向下游发展的过程中强度减弱,但范围有所增加;较小的间隙或者在接近叶栅前缘区域,间隙流仅将通道涡整体推移,不破坏通道涡的完整性;间隙较大或在叶栅的高加载区域,间隙流将通道涡拆分成2个独立的涡区,并将这2个涡区分别向压力面和中叶展推移,而间隙涡本身则占据动叶顶部较大的区域.最后,给出了不同间隙下2种不同的端壁二次流结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号