首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chung Y  Klimanskaya I  Becker S  Marh J  Lu SJ  Johnson J  Meisner L  Lanza R 《Nature》2006,439(7073):216-219
The most basic objection to human embryonic stem (ES) cell research is rooted in the fact that ES cell derivation deprives embryos of any further potential to develop into a complete human being. ES cell lines are conventionally isolated from the inner cell mass of blastocysts and, in a few instances, from cleavage stage embryos. So far, there have been no reports in the literature of stem cell lines derived using an approach that does not require embryo destruction. Here we report an alternative method of establishing ES cell lines-using a technique of single-cell embryo biopsy similar to that used in pre-implantation genetic diagnosis of genetic defects-that does not interfere with the developmental potential of embryos. Five putative ES and seven trophoblast stem (TS) cell lines were produced from single blastomeres, which maintained normal karyotype and markers of pluripotency or TS cells for up to more than 50 passages. The ES cells differentiated into derivatives of all three germ layers in vitro and in teratomas, and showed germ line transmission. Single-blastomere-biopsied embryos developed to term without a reduction in their developmental capacity. The ability to generate human ES cells without the destruction of ex utero embryos would reduce or eliminate the ethical concerns of many.  相似文献   

2.
3.
4.
Interaction between endothelial cells and mural cells (pericytes and vascular smooth muscle) is essential for vascular development and maintenance. Endothelial cells arise from Flk1-expressing (Flk1+) mesoderm cells, whereas mural cells are believed to derive from mesoderm, neural crest or epicardial cells and migrate to form the vessel wall. Difficulty in preparing pure populations of these lineages has hampered dissection of the mechanisms underlying vascular formation. Here we show that Flk1+ cells derived from embryonic stem cells can differentiate into both endothelial and mural cells and can reproduce the vascular organization process. Vascular endothelial growth factor promotes endothelial cell differentiation, whereas mural cells are induced by platelet-derived growth factor-BB. Vascular cells derived from Flk1+ cells can organize into vessel-like structures consisting of endothelial tubes supported by mural cells in three-dimensional culture. Injection of Flk1+ cells into chick embryos showed that they can incorporate as endothelial and mural cells and contribute to the developing vasculature in vivo. Our findings indicate that Flk1+ cells can act as 'vascular progenitor cells' to form mature vessels and thus offer potential for tissue engineering of the vascular system.  相似文献   

5.
Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from patient-specific cloned blastocysts via somatic cell nuclear transfer (SCNT), holds great promise for treating many human diseases using regenerative medicine. Teratoma formation and germline transmission have been used to confirm the pluripotency of mouse stem cells, but human embryonic stem cells (hESCs) have not been proven to be fully pluripotent owing to the ethical impossibility of testing for germ line transmis- sion, which would be the strongest evidence for full pluripotency. Therefore, formation of differentiated cells from the three somatic germ layers within a teratoma is taken as the best indicator of pluripotency in hESC lines. The possibility that these lines lack full multi- or pluripotency has not yet been evaluated. In this study, we established 16 mouse ESC lines, including 3 genetically defective nuclear transfer- ESC (ntESC) lines derived from SCNT blastocysts of infertile hermaphrodite F1 mice and 13 ntESC lines derived from SCNT blastocysts of normal F1 mice. We found that the defective ntESCs expressed all in vitro markers of pluripotency and could form teratomas that included derivatives from all three germ layers, but could not be transmitted via the germ line, in contrast with normal ntESCs. Our results in- dicate that teratoma formation assays with hESCs might be an insufficient standard to assess full pluripotency, although they do define multipotency to some degree. More rigorous standards are required to assess the safety of hESCs for therapeutic cloning.  相似文献   

6.
7.
Endothelial cell therapy has been implicated to enhance tissue regeneration and vascularization in ischemic kidney. However, no published study has yet examined direct effects of endothelial cell treatment in kidney recovery. This study investigated the therapeutic efficacy of endothelial cells in a mouse model with acute kidney injury (AKI). Thus, human embryonic stem cells-derived endothelial cells (hESC-ECs) labeled with a reporter system encoding a double fusion reporter gene for firefly luciferase (Fluc) and green fluorescent protein (GFP) were characterized by Fluc imaging and immunofluoresence staining. Cultured hESC-ECs (1×106) were injected into ischemic kidney shortly after AKI. Survival of the transplanted hESC-ECs was monitored in vivo from day 1 to 14 after endothelial cell transplantation and potential impact of hESC-EC treatment on renal regeneration was assessed by histological analyses. We report that a substantial level of bioluminescence activity was detected 24 h after hESC-EC injection followed by a gradual decline from 1 to 14 d. Human ESC-ECs markedly accelerated kidney cell proliferation in response to ischaemia-induced damage, indicated by an elevated number of BrdU+ cells. Co-expression of Sca-1, a kidney stem cell proliferation marker, and BrdU further suggested that the observed stimulation in renal cell regeneration was, at least in part, due to increased proliferation of renal resident stem cells especially within the medullary cords and arteriole. Differentiation of hESC-ECs to smooth muscle cells was also observed at an early stage of kidney recovery. In summary, our results suggest that endothelial cell therapy facilitates kidney recovery by promoting vascularization, trans-differentiation and endogenous renal stem cell proliferation in AKI.  相似文献   

8.
R Kingston  E J Jenkinson  J J Owen 《Nature》1985,317(6040):811-813
There is much interest in early T-cell development, particularly in relation to the diversification of the T-cell receptor repertoire and the elucidation of the lineage relationships between T-cell populations in the thymus and peripheral lymphoid organs. However, the requirements for the growth of the earliest thymic T-cell precursor in 13-14-day mouse embryo thymus in isolation from the thymic environment are unknown. Proliferation and maturation of such cells are not sustained either in the presence of monolayers of thymic stromal cells or by the addition of interleukin-2 (IL-2), despite the expression of receptors for this growth factor on a proportion of thymocytes displaying the immature Thy 1+ Lyt-2-L3T4- phenotype in the embryonic thymus. In contrast, when maintained within the intact thymic environment in organ cultures, 13-14-day thymic stem cells do show a pattern of surface marker and functional development similar to that seen in vivo, suggesting that short-range growth signals, perhaps necessitating direct contact with organized epithelial cells, are required. We have shown, by exploiting the selective toxicity of deoxyguanosine (dGuo) for early T cells, that this organ culture system can be manipulated to produce alymphoid lobes that can be recolonized from a source of precursors in a transfilter system. We now show that recolonization of alymphoid lobes can also be achieved by association with T-cell precursors in hanging drops, allowing recolonization by exposure to defined numbers of precursors, including a single micromanipulated stem cell. Analysis of T-cell marker expression in these cultures shows that a single thymic stem cell can produce progeny of distinct phenotypes, suggesting that these marker-defined populations are not derived from separate prethymic precursors, but arise within the thymus.  相似文献   

9.
Parkinson's disease is a widespread condition caused by the loss of midbrain neurons that synthesize the neurotransmitter dopamine. Cells derived from the fetal midbrain can modify the course of the disease, but they are an inadequate source of dopamine-synthesizing neurons because their ability to generate these neurons is unstable. In contrast, embryonic stem (ES) cells proliferate extensively and can generate dopamine neurons. If ES cells are to become the basis for cell therapies, we must develop methods of enriching for the cell of interest and demonstrate that these cells show functions that will assist in treating the disease. Here we show that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells. The dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain. Our results encourage the use of ES cells in cell-replacement therapy for Parkinson's disease.  相似文献   

10.
Generation of a prostate from a single adult stem cell   总被引:1,自引:0,他引:1  
Leong KG  Wang BE  Johnson L  Gao WQ 《Nature》2008,456(7223):804-808
The existence of prostate stem cells (PSCs) was first postulated from the observation that normal prostate regeneration can occur after repeated cycles of androgen deprivation and replacement in rodents. Given the critical role of PSCs in maintaining prostate tissue integrity and their potential involvement in prostate tumorigenesis, it is important to define specific markers for normal PSCs. Several cell-surface markers have been reported to identify candidate PSCs, including stem cell antigen-1 (Sca-1, also known as Ly6a), CD133 (Prom1) and CD44 (refs 3-10). However, many non-PSCs in the mouse prostate also express these markers and thus identification of a more defined PSC population remains elusive. Here we identify CD117 (c-kit, stem cell factor receptor) as a new marker of a rare adult mouse PSC population, and demonstrate that a single stem cell defined by the phenotype Lin(-)Sca-1(+)CD133(+)CD44(+)CD117(+) can generate a prostate after transplantation in vivo. CD117 expression is predominantly localized to the region of the mouse prostate proximal to the urethra and is upregulated after castration-induced prostate involution-two characteristics consistent with that of a PSC marker. CD117(+) PSCs can generate functional, secretion-producing prostates when transplanted in vivo. Moreover, CD117(+) PSCs have long-term self-renewal capacity, as evidenced by serial isolation and transplantation in vivo. Our data establish that single cells in the adult mouse prostate with multipotent, self-renewal capacity are defined by a Lin(-)Sca-1(+)CD133(+)CD44(+)CD117(+) phenotype.  相似文献   

11.
The ground state of embryonic stem cell self-renewal   总被引:3,自引:0,他引:3  
  相似文献   

12.
Generation of a functional mammary gland from a single stem cell   总被引:1,自引:0,他引:1  
The existence of mammary stem cells (MaSCs) has been postulated from evidence that the mammary gland can be regenerated by transplantation of epithelial fragments in mice. Interest in MaSCs has been further stimulated by their potential role in breast tumorigenesis. However, the identity and purification of MaSCs has proved elusive owing to the lack of defined markers. We isolated discrete populations of mouse mammary cells on the basis of cell-surface markers and identified a subpopulation (Lin-CD29hiCD24+) that is highly enriched for MaSCs by transplantation. Here we show that a single cell, marked with a LacZ transgene, can reconstitute a complete mammary gland in vivo. The transplanted cell contributed to both the luminal and myoepithelial lineages and generated functional lobuloalveolar units during pregnancy. The self-renewing capacity of these cells was demonstrated by serial transplantation of clonal outgrowths. In support of a potential role for MaSCs in breast cancer, the stem-cell-enriched subpopulation was expanded in premalignant mammary tissue from MMTV-wnt-1 mice and contained a higher number of MaSCs. Our data establish that single cells within the Lin-CD29hiCD24+ population are multipotent and self-renewing, properties that define them as MaSCs.  相似文献   

13.
Cram DS  Song B  Trounson AO 《Nature》2007,450(7169):E12-E14
Somatic cell nuclear transfer (SCNT) into enucleated oocytes has emerged as a technique that can be used to derive mouse embryonic stem cell lines with defined genotypes. In this issue Byrne et al. report the derivation of two SCNT Rhesus macaca male stem cell lines designated CRES-1 and CRES-2. Molecular studies detailed in their paper provides supporting evidence that the chromosome complement of CRES-1 and CRES-2 was genetically identical to the male cell donor nucleus and that the mitochondrial DNA originated from different recipient oocytes. In this validation paper, we independently confirm that both stem cell lines were indeed derived by SCNT.  相似文献   

14.
家禽胚胎干细胞的研究进展   总被引:1,自引:0,他引:1  
阐述了干细胞及胚胎干细胞的概念,它的发展历程,着重讨论了家禽胚胎发育的特点以及家禽胚胎干细胞的分离与体外培养方法及应用前景,将来的发展方向。  相似文献   

15.
In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These ceils are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.  相似文献   

16.
为了探讨人胚神经干细胞体外培养条件下的生物学特性,为其应用于临床治疗奠定基础.取胎龄16周的人流产胚胎,胰酶消化结合机械法分离成单细胞悬液,以2×106个细胞/mL接种到含hEGF和h-bFGF的DMEM/F12、N2培养基进行体外培养;观察细胞生长情况,用10% FBS诱导神经干细胞球分化,免疫细胞化学鉴定. 结果显示从人胚大脑分离出的细胞经悬浮培养可以形成细胞球,表达Nestin蛋白.经诱导分化后具有表达神经元,神经胶质细胞的特异性抗原. 说明人胚神经干细胞在体外可以稳定生长,并能分化成为神经原及胶质细胞.  相似文献   

17.
Geijsen N  Horoschak M  Kim K  Gribnau J  Eggan K  Daley GQ 《Nature》2004,427(6970):148-154
Egg and sperm cells (gametes) of the mouse are derived from a founder population of primordial germ cells that are set aside early in embryogenesis. Primordial germ cells arise from the proximal epiblast, a region of the early mouse embryo that also contributes to the first blood lineages of the embryonic yolk sac. Embryonic stem cells differentiate in vitro into cystic structures called embryoid bodies consisting of tissue lineages typical of the early mouse embryo. Because embryoid bodies sustain blood development, we reasoned that they might also support primordial germ cell formation. Here we isolate primordial germ cells from embryoid bodies, and derive continuously growing lines of embryonic germ cells. Embryonic germ cells show erasure of the methylation markers (imprints) of the Igf2r and H19 genes, a property characteristic of the germ lineage. We show that embryoid bodies support maturation of the primordial germ cells into haploid male gametes, which when injected into oocytes restore the somatic diploid chromosome complement and develop into blastocysts. Our ability to derive germ cells from embryonic stem cells provides an accessible in vitro model system for studies of germline epigenetic modification and mammalian gametogenesis.  相似文献   

18.
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号