共查询到3条相似文献,搜索用时 0 毫秒
1.
为了解决高功率微波(HPM)源模拟中圆柱波导开放边界的截断问题,研究了柱坐标系下卷积完全匹配层(CPML)吸收边界,给出了CPML中电磁场的差分方程和轴边界条件,并进行了数值验证.在不同频率和模式的激励源作用下,模拟了2.5维问题中CPML截断圆柱波导开放边界的性能,相对误差最大值都小于-90dB在2.5维电磁PIC软件中引入CPML方法,模拟计算了相对论返波管.结果表明,CPML在截断波导开放边界方面的性能远好于Mur型吸收边界条件。 相似文献
2.
高精度数值模拟方法在具有化学反应及强间断的炸药爆轰问题数值模拟中具有重要的应用价值.本文通过求解柱坐标系下二维轴对称反应流欧拉方程组,采用基于Level set界面捕捉方法的欧拉型高精度多介质数值方法,编写了凝聚相炸药非理想爆轰程序,并对TATB基炸药在拐角效应中的死区现象进行了数值模拟研究.通过对比基于压力的点火增长... 相似文献
3.
利用鞍点概率估计可以直接逼近非正态变量空间中单个线性功能函数概率分布的特点, 提出了三种基于鞍点概率估计的系统多模式可靠性分析方法. 其一是基于鞍点估计的近似边界理论, 该方法首先采用鞍点概率估计方法得到各失效模式的失效概率和等价正态可靠度指标, 然后利用边界理论近似得到系统失效概率的上下界限; 其二是基于鞍点估计的Nataf分布逼近法, 该方法首先采用鞍点估计得到各失效模式响应量的概率密度函数及近似线性化功能函数的相关系数, 然后根据Nataf分布来逼近结构系统响应的联合概率密度函数, 进而利用直接数字模拟法来求得结构系统的失效概率; 其三是鞍点线抽样方法, 该方法首先通过变量的线性标准化变换来消除变量的量纲, 然后在标准化的变量空间中利用线抽样方法的样本点将系统失效概率转化为一系列线性响应功能函数失效概率平均值的形式, 再采用鞍点概率估计方法直接估计非正态变量标准化空间中这一系列线性响应功能函数的失效概率. 通过比较三种方法的基本思想、实现过程和算例结果可以发现: (1) 第一种方法只能给出多模式系统失效概率的界限, 并且只适用于线性程度较好的功能函数的情况; (2) 第二种方法可给出系统失效概率的确定值, 这种方法的误差主要来源于Nataf分布对多模式系统响应量联合概率密度函数的近似, 还来源于每个失效模式极限状态函数的非线性程度, 第二种方法也只适用于线性化程度较好的功能函数; (3) 第三种方法给出的是多模式系统失效概率的估计值, 该估计值随样本点数的增加而趋于真值, 并且该方法可以考虑功能函数的非线性对失效概率的影响, 因此方法三是适用范围最广的一种方法. 相似文献