首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Holocene volcanic rocks in Jingbo Lake region ? Diversity of magmatism   总被引:2,自引:0,他引:2  
During the time from 5500 a to 5200 a BP more than 10 Holocene volcanoes in Jingbo Lake region erupted and the volcanic rocks covered an area of about 500 km2. Holocene volcanic rocks in Jingbo Lake region belong to the potassium?rich rocks and contain three rock types: trachybasalts, basanites and phonotephrites. Various types of magmatism formed in a small area and in a short period of time came from partial melting of potassically?metasomatised lithospheric mantle. The diversity of magmatism can be explained by that Jingbo Lake is situated in the back?arc extensional region of East Asian continent subducted by the Pacific Ocean, and potassic fluid derived from mantle wedge or dehydration of subducted slab can result in a high heterogeneity of the mantle beneath this region. Based on the pressure estimation of clinopyroxene megacrysts, we estimate that phonotephrite magma fractionally crystallize at ca. 52?54 km down the earth.  相似文献   

2.
Whether or not Grenvillian orogeny occurred in South China still remains highly controversial because high-quality,discriminating data are lacking,and therefore,the key to resolve this matter is to find datable volcanic and/or sedimentary rocks related to Grenvillian orogeny. Such rocks are apparently present in the Fuliangpeng Member from the lower-middle part of Kunyang Group in central Yunnan; here the unit is more than 100 m thick and consists of andesitic ignimbrite,tuffite,terrigeous clastic rocks and carbonates. These volcanic rocks,developed south of the Sibao fold-thrust belts,represent the earliest calc-alkaline volcanic activity in late Precambrian time from central Yunnan and are coeval with both a change in sedimentary facies from detritus to carbonates and the beginning of seismite development elsewhere. Two samples for SHRIMP analysis were collected from this volcanic unit. Sample G3-29-2,from the bottom of Fuliangpeng Member,is an ignimbrite,and about 100 zircon crys-tals recovered from it have euhedral shapes and display relatively simple sector zonation under cathodoluminescent (CL) imaging,suggesting a magmatogenic origin. Twenty-five of the zircons were analyzed and a weighed-mean U-Pb age of 1032±9 Ma was obtained. Sample G3-29-3 from uppermost part of Fuliangpeng Member is a tuffite,and many rounded,evidently detrital zircons were recovered. Nine of these zircons were analyzed,and the oldest single-grain U-Pb zircon age is 1938±26 Ma,im-plying that Paleoproterozoic basement developed in Cathaysia. The dating result,combined with the geotectonic research on the Fuliangpeng Member,leads us to conclude that late Mesoproterozoic orogenic volcanic activity occurred in the western part of South China,and that the related collision of Yangtze and Cathaysian cratons was an integral part of the assembly of Rodinia.  相似文献   

3.
Two-pyroxene granulite and clinopyroxene granulite xenoliths have been recently discovered in the Late Paleogene toNeogene volcanic rocks (with ages in the range of 4.27~44.60 Ma) that outcropped in Hoh Xil, central Tibetan plateau. Based on theelectron microprobe analysis data, the xenoliths provide constraints for the formation equilibrium temperatures of the two-pyroxene gran-ulite being about 783 to 818℃ as determined by two-pyroxene thermometry and the forming pressure of the clinopyroxene granulite beingabout 0.845 to 0.858 GPa that is equivalent to 27.9~28.3 km depth respectively. It indicates that these granulite xenoliths represent thesamples from the middle part of the thickened Tibetan crust. This discovery is important and significant to making further discussion onthe component and thermal regime of the deep crust of the Tibetan plateau.  相似文献   

4.
The REE patterns of the basic volcanic rocks in Mangya area, Altun, are slight rich in LREE with (La/Ya)-N=1.69-3.20, (La/Sm)-N=1.37-1.87, other trace element ratios of the rocks are Th/Ta≈1 (for a few samples greater than 1.5), Nb/Y=0.34-0.62, Ti/Y=310-443 (on the average: 381), Ti/V=37-62, Zr/Nb=9.4-12.4, Sr/Rb=12-80 (on the average: 37), and Nb/Th=7.7-16.8. These features are similar to that of E-MORE or OIB. The ε Nd(t) value, being 3.95- 4.12, shows that the source of the volcanic rocks is derived from depleted asthenosphere mantle mixed with materials from enriched mantle. These, together with the information of geological setting and rock assemblages, indicate that the basic volcanic rocks are of ophiolite. The Sm-Nd isotope ages for the eight basic volcanic rock samples construct a straight line with good correlation, and the calculated isochron age is (481.3±53) Ma. Besides, the eight calculated ε Nd(t) and model ages are close to each other, which suggests that they are homologous, so the isochron is not a mixed line. In the meantime, the isochron age ((481.3±53) Ma) is lower than the model ages (T DM=1 004-1 534 Ma) of the samples, suggeting that the isochron age represents the formation age of the basic volcanic rocks and the ophiolite belt in Mangya area, Altun is formed in the early Paleozoic (Cambrian-Ordovician). In spite of the greater uncertainty of the age, it is still reliable because it is consistent with the age constrained by the regional strata.  相似文献   

5.
Two days after the March 11,2011,Mw 9.0 Tohoku-oki earthquake,Shinmoedake volcano,located on the Japanese island of Honshu,erupted.Was this eruption triggered by the Tohoku-oki earthquake?Could Mount Fuji and Changbaishan volcanoes also be triggered to erupt?By calculating changes in the regional stress-strain field that resulted from the earthquake,we find that Mount Fuji,Shinmoedake and Changbaishan volcanoes are all located in regions of volumetric expansion.The volumetric expan-sions at a depth of 10 km are up to~220 nano-strain,~8 nano-strain,and~14 nano-strain,respectively,for the three volcanoes. The strain changes inferred from GPS co-seismic displacements also suggest that these three volcanoes are located in regions with surface areal expansion.Considering that the expansional stress may cause the opening of magma channels,exsolution of CO2 gases stored in magma,and a series of positive feedback effects,the Tohoku-oki earthquake may result in an increase in the activ-ity of these volcanoes.Attention should be paid to potential triggering of volcanic eruptions by stress changes induced by the Tohoku-oki earthquake.  相似文献   

6.
Whole-rock and mineral separate Ar-Ar dating was carried out for the Linzizong volcanic rocks at Linzhou Basin in Tibet to constrain the time span of volcanism and the corresponding stratigraphic sequence. Sampling was based on detailed geologic mapping and stratigraphic sequence of Dianzhong, Nianbo, Pana Formations, systematically from the bottom to near the top. The results indicate that the Linzizong volcanic rocks erupted from Paleocene to middle of Eocene (64.43--43.93 Ma). Among them, the Pana Formation formed from ca. 48.73 to 43.9 Ma, the Nianbo Formation around 54 Ma and the Dianzhong Formation from 64.4 to 60.6 Ma. In combination with evidence from the geochemical characteristics of the volcanic rocks, and from stratigraphy in southern Tibet, it is postulated that the age of the lowest member in the Dianzhong Formation of the Linzizong volcanic rock, which overlies unconformably the Late Cretaceous Shexing Formation, likely corresponds to the inception of the collision between Indian and Asian continents in southern Tibet.  相似文献   

7.
The latest eruptions in two important Mesozoic volcanic basins of Fanchang and Ningwu located in the middle-lower reaches of the Yangtze River formed the bimodal volcanic rocks of the Kedoushan Formation and ultrapotassic volcanic rocks of the Niangniangshan Formation, respectively. The representative volcanic rocks of the two Formations were selected for LA-ICPMS zircon U-Pb dating. The results indicate that there exist a large amount of magmatic zircons as indicated by high Th/U ratios in these volcanic rocks. The weighted mean age of 21 analyses is 130.7±1.1 Ma for the Kedoushan Formation, and that of 20 analyses is 130.6±1.1 Ma for the Niangniangshan Formation. These U-Pb ages are interpreted to represent the formation times of the volcanic rocks. In combination with other known geochronological data for Mesozoic volcanic rocks from the Lower Yangtze region, it is proposed that the latest volcanic activations in the Jinniu, Luzong, Fanchang and Ningwu volcanic basins probably came to end prior to ca. 128 Ma. There is no significant time interval between the early and later volcanic activities in the Luzong and Ningwu basins, suggesting a short duration of volcanic activities and thus implying the onset of an extensional tectonic setting at about 130 Ma in the Lower Yangtze region. Integrated studies reveal that the Early Cretaceous magmatic activities and their geochronological framework in the Lower Yangtze region are a response to progressively dynamic deep processes that started with the transformation of tectonic setting from compression to extension, followed by delaminating of the lower part of the thickened lithosphere, lithospheric thinning, asthenosphere upwelling, and crust-mantle interaction.  相似文献   

8.
Chang'E-1 orbiter discovers a lunar nearside volcano: YUTU Mountain   总被引:1,自引:0,他引:1  
In the day time of the Moon surface, the strong illumination from high altitude and high albedo rate radical craters will introduce the illumination effect on observing the nearby low altitude, low albedo rate and shallow small slop rate area seriously, and even can "hide" the later area from the light. Based on the lunar global topography model obtained by Chang'E-1 mission, and by comparing with the lunar gravity model, a volcano named "YUTU Mountain" has been identified. It is a volcano with diameter of -300 km and height of -2 km located at (14°N, 308°E) in Oceanus ProceUarum. Besides, the DEM of another volcano named "GUISHU Mountain" in the same area has been improved. This new discovery will benefit the study of lunar magmatism and volcanism evolution in the nearside of the Moon.  相似文献   

9.
The main-channel of the lower Yellow River is the main path of water and sediment transportation. In this paper, we put forth a suggestion that the bank-full discharge of the main-channel in the lower Yellow River should be no less than 4000 m^3/s, which is based on the demand from effective sediment transportation (or riverbed scouring), the demand of flood control on morphology of the cross section of the main-channel, and the possible riverbed-forming force of future flood. The forming of the main-channel is the process for the flood force to overcome the resistance from the riverbed. The forming of the main-channel configuration comes from the competition between riverbed-forming force of flood and resistance from the riverbed. Regarding the flood with medium or less sediment content and without floodplain inundated, the main-channel forming mechanism can be simplified as the relationship between the change of cross section area and W^αQ^β. For forming same main-channel, the needed flood force W^0.32Q^0.37 is definite, i.e., when the discharge is large, the flood volume can be smaller; if some flood is able to scour the main-channel, its force W^0.32Q^0.37 should be larger than 41. Not all floods that inundate floodplain have the function of silting in floodplain and scouring main-channel. Regarding flood with medium or less sediment content, only when the flood discharge is over 1.5 times of the relevant bankfull discharge, obvious scouring effect can occur in the main-channel.  相似文献   

10.
Miao  Laicheng  Fan  Weiming  Zhang  Fuqing  Liu  Dunyi  Jian  Ping  Shi  Guanghai  Tao  Hua  Shi  Yuruo 《科学通报(英文版)》2004,49(2):201-209
Located in the eastern portion of the Xing'an-Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216±3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele complex is not Precambrian metamorphic rocks and the so-called Precambrian "Nenji-ang Block" does essentially not exist. In combination with regional geological data, we propose that the Kele metamorphic complex is likely related to a collisional tectonism that took place in Triassic time, as indicted by its metamorphic age of 216±3 Ma. The Xinkailing granitic complex was em-placed along the collisional zone during Mid-Jurassic time, likely in a post-orogenic or anorogenic setting.  相似文献   

11.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   

12.
SHRIMP U-Pb zircon dating was carried out for the Daohugou Biota near Ningcheng of Inner Mongolia and for lavas overlying or underlying sala-mander-bearing strata at Reshuitang in Lingyuan of West Liaoning. The results suggest that the Dao- hugou Biota occurred at an interval from 168 Ma to 164―152 Ma. Both the Daohugou Biota and the salamander-bearing fossil assemblage are the same biota and thus developed from 168 to 152 Ma, i.e. from late Middle Jurassic to the early Late Jurassic. The Daohugou Biota-bearing rocks, resting on the Jiulongshan Formation in disconformity and being overlain in unconformity by Late Jurassic Tuchengzi Formation and Early Cretaceous rocks containing the Jehol Biota, are mainly composed of volcanic-sedi- mentary rocks in a normal sequence. It is recom- mended that the Daohugou Biota and the related stratigraphy should be correlated with the Tiaojishan Formation (Lanqi Formation in West Liaoning) or its synchronous rocks. It is suggested that the Dao- hugou Biota and the Jehol Biota would be neither taken into one biota nor considered as the earliest elements of the Jehol Biota. The Daohugou Biota and the related rocks and the Yixian Formation were respectively formed in different periods of volcanic-sedimentary tectonics.  相似文献   

13.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth's evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9--1.5 Ga and 0.4--0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

14.
Determination of cloud-top height from stereoscopic observation   总被引:2,自引:0,他引:2  
A new and accurate method is presented based on the cloud movement (height and position), the spherical and plane triangular relationships of the spacecraft, the center of the earth, the projected-cloud and the true-cloud for determination of cloud-top height and position. Synthetic stereo images that have spatial resolution of 1.25 km from a single satellite are used to test this method. It is demonstrated that the cloud-top structure can be determined from the stereoscopic measurements of geo-synchronous satellite with vertical accuracy of approximately 500 m. The vertical accuracy can be better with lower orbiters.  相似文献   

15.
It is demonstrated by various geochemical indexes that the Zhengjia-Wangzhuang Oilfield with viscous crude oil in the Jiyang Depression has been sourced from the contribution of matured source rocks in the upper Es4. The principal cause leading to the densification of crude oils would be biodegradation, with the degradation level of crude oils being ranked as 2-8; vertically, the biodegradation level increases from the top to bottom of the oil column, with a distinctive biodegradation gradient occurring. Calculated parameters of sterane, terpane and methyl-phenanthrene have indicated that the source-rock's maturity of crude oils and asphaltic sands ranges from 0.7 to 0.9, and based on the calculation of Easy Ro model, the temperature of hydrocarbon generation in the source rock would be within 120-140℃, which coincides with the measurements of reservoir inclusions. The measured homogenization temperature would represent the generation temperature of the source rock, and be fairly different from that of reservoir while being charged with hydrocarbons, which reflects the hydrocarbon-charging to be a fast process, and the period of pool-formation to be consistent with that of peaked generation. According to the evaluation of generation history, the pool-formation could have been occurring in 7-15 Ma. And the biodegradation of crude oils in the study area would be considered to take place in 4-15 Ma based on the examination of biodegradation order and dynamic calculations.  相似文献   

16.
A report is presented of SHRIMP zircon U-Pb dating data of meta-igneous and meta-sedimentary rocks of the Xinghuadukou Group(Xinlin-Hanjiayuanzi area,Heilongjiang Province)and meta-volcanic rocks of the Zhalantun Group(Zhalantun district,Inner Mongolia).The SHRIMP analyses show that the meta-igneous rocks from the Xinghuadukou Group formed at 506±10―547±46 Ma,belonging to Early-Middle Precambrian,whereas the meta-sedimentary rocks yielded detrital zircons,with ages of 1.0―1.2,1.6―1.8 and 2.5―2.6 Ga,indicative of deposition age at least<1.0 Ga. Meta-basic volcanic rocks from the Zhalantun Group have a formation age of 506±3 Ma.These data suggest that both the Xinghuadukou and Zhalantun Groups formed during Cambrian and/or Neoproterozoic time,rather than Paleoproterozoic time as previously thought.Early Precambrian inherited zircons in the meta-igneous rocks and numerous Precambrian detrital zircons in the meta-sedimentary rocks imply that these rocks were formed proximal to older crust.It is inferred that the Xinghuadukou and Zhalantun Groups represent Cambrian and/or Neoproterozoic vol- cano-sedimentary sequences formed in an active continental margin setting.  相似文献   

17.
Xiaoqinling District is an important gold-producing area in China. It ranks second to Jiaodong with regard to gold deposits. The uprising period of the Wenyu granitic pluton and the wall-rocks of the deposit, as well as the mineralizing depth and reserved place of gold ore bodies, are significant to ore exploration. Fission-track (FT) analysis of zircons and apatites of granitic rocks from the Wenyu granitic pluton shows that apatite FT (AFT) data modeling indicates a rapid cooling rate of 20℃/Ma from 138 to 120 Ma after emplacement at 138 Ma. Thermal evolution and inversion curves suggest a secondary phase of fast cooling and up- rising from 45 to 35 Ma, and 35 Ma, respectively, with a cooling rate of 6.7℃/Ma and a denudation quantity of -4.3 km. The last cooling phase took place from 〈4 Ma, with an average cooling rate of -11.3℃/Ma and a denudation amount of 1.3 km. Total exhumation quantity of 5.6 km and uprising elevation of 7.3 km are similar to the estimated results of fluid inclusions from the Dongtongyu and Wenyu gold deposits. The 39Ar/40Ar dating of sericite from the fault planes of the Xunmadao-Xiaohe and Taiyao faults demonstrate two uprising activities of the ore-host metamorphic complex. The Huashan and Wenyu granitic plutons inten- sively occurred during 77 and 45 Ma, respectively. These data sets are valuable for understanding the uplifting process and for preserving gold ore bodies in the Xiaoqinling area, as well as for further studies on tectonic evolutions of the Taihua Complex and the Qinling-Dabie Orogen.  相似文献   

18.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

19.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth’s evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9-1.5 Ga and 0.4-0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

20.
Integrated fission track and (U-Th)/He analysis is carried out on 6 apatite and 6 zircon samples from a near vertical section in The Tiantangzhai region at the core of the present Dabieshan orogen. The result shows that the region experienced cooling/exhumation during the Late Cretaceousand Early Tertiary period. Age-elevation relationships for different dating systems and different minerals suggest a pulse of rapid exhumation at ~110 Ma before present, preserved in the structurally highest samples. At lower elevations, ages begin to decrease with decreasing elevation, suggesting lower exhumation rates since 90 Ma. Two periods of different exhumation rates are identified since 90 Ma. The average apparent exhumation rate for the period of 43.4—22.5 is 0.062 km/Ma, whereas that for the period of 76.4—47.4 Ma is 0.039 km/Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号