首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dendrite arm spacings increase from the edge of the billet to the center and decrease obviously with increasing electromagnetic torque, which will be beneficial to refine the solidification structure and enlarge the equiaxed crystal zone. The ratio of equiaxed crystal increases by 15.9% with the electromagnetic torque increasing from 230 to 400 cN·cm. The increase of stirring intensity can improve the cooling rate and the impact of M-EMS on it reduces from the edge of the billet to the central area, where the cooling rates are similar at different torques. The closer to the central area, the less the influence of M-EMS on the cooling rate is. The ratio of the primary to secondary dendrite arm spacing is approximately 2.0, namely, λ1≈2λ2, and is constant irrespective of the stirring intensity and position of the billet. Original position analysis (OPA) results indicate that the center segregation of the billet is greatly improved, and the more uniform and compact solidification structure will be obtained with the increase of stirring intensity.  相似文献   

2.
Dendritic growth is one of the most common micro-structural formation mechanisms during crystal growth. Its morphology provides the kinetics information of crystal growth. Therefore, it is valuable to perform the research on rapid dendrite growth in order…  相似文献   

3.
Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dendrite arm spacings increase from the edge of the billet to the center and decrease obviously with increasing electromagnetic torque, which will be beneficial to refine the solidification structure and enlarge the equiaxed crystal zone. The ratio of equiaxed crystal increases by 15.9% with the electromagnetic torque increasing from 230 to 400 cN·cm. The increase of stirring intensity can improve the cooling rate and the impact of M-EMS on it reduces from the edge of the billet to the central area, where the cooling rates are similar at different torques. The closer to the central area, the less the influence of M-EMS on the cooling rate is. The ratio of the primary to secondary dendrite arm spacing is approximately 2.0, namely, λ1≈2λ2, and is constant irrespective of the stirring intensity and position of the billet. Original position analysis (OPA) results indicate that the center segregation of the billet is greatly improved, and the more uniform and compact solidification structure will be obtained with the increase of stirring intensity.  相似文献   

4.
Nickel-based single crystal superalloys oriented along the o0014 and o0114 lattice directions were produced by a bottom seeding technique in an attempt to understand the evolution mechanism of the dendrite grown along different orientations in the present study. The changes in primary dendrite arm spacing for single crystal with different orientations are also discussed. It was found that the dendrite morphologies of single crystal superalloy grown along o0114 were different from that of o0014. Firstly, the dendrites showed the irregular cruciforms and array in rows in a transverse section. Secondly, no typical primary dendrites were observed but the dendrite morphologies appeared like the letter ‘‘V’’ or ‘‘W’’ in a longitudinal section. The primary dendrite arms grew along the o0014 orientation from the bottom of the sample in the o0014 orientation. However, in the o0114 orientation, the single crystal developed by continuous side-branching along the [001] and [010] orientations. The primary dendrite arm spacing was as the function of the deviation angle f. It indicates that with the increase in the deviation angle f, the primary dendrite arm spacing first increased, and then decreased.  相似文献   

5.
Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 T L) is obtained in experiment. Theoretic analysis indicated that because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is δT 0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.  相似文献   

6.
定向凝固研究易切削钢中硫化物的生成行为   总被引:1,自引:0,他引:1  
通过定向凝固实验研究了易切削钢中硫化物的生成过程,并建立了枝晶臂间距、硫化物的平均直径与凝固条件之间的关系.实验结果表明:随着温度梯度和拉速的增大,MnS的平均直径减小,数量增多;定向凝固过程中硫化物的完全析出温度大约在固相线温度下100℃左右,MnS形态的改变,主要受其组成元素的活度影响,即MnS形态的改变受其界面自由能的影响;对定向凝固实验中钢的枝晶臂间距、硫化物的平均直径与凝固条件的关系进行了拟合,拟合结果与前人研究结果相吻合.  相似文献   

7.
The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ → L +γ + G → γ + G → P (α + Fe3C) + α + G. The graphite can be formed in three ways:directly nucleated from liquid through the eutectic reaction (L → γ + G), independently precipitated from the oversaturated γ phase (γ → γ + G), and produced via the eutectoid transformation (γ → G + α). The area fraction and length of graphite as well as the primary dendrite spacing decrease with increasing cooling rate. Type-A graphite is formed at a low cooling rate, whereas a high cooling rate results in the precipitation of type-D graphite. After analyzing the graphite precipitation in the as-cast and transition regions separately solidified with and without inoculation, we concluded that, induced by the inoculant addition, the location of graphite precipitation changes from mainly the γ interdendritic region to the entire γ matrix. It suggests that inoculation mainly acts on graphite precipitation in the γ matrix, not in the liquid or at the solid-liquid front.  相似文献   

8.
The rapid solidification behavior of Co-Sn alloys was investigated by melt spinning method.The growth morphology of αCo phase in Co-20% Sn hypoeutectic alloy changes senistively with cooling rate.A layer of columnar αCo dendrite forms near the roller side at low colling rates.This region becomes small and disappears as the cooling rate increases and a kind of very fine homogeneous microstructure characterized by the distribution of equiaxed αCo dendrites in γCo3Sn matrix is subsequently produced.For Co-34.2% Sn eutectic alloy,anomalous eutectic forms within the whole range of cooling rates.The increase of cooling rate has two obvious effects on both alloys:one is the microstructure refinement,and the other is that it produces more crystal defects to intensify the seattering of free electrons,leading to a remarkable increase of electrical resistivity,Under the condition that the grain boundary reflection coefficient γ approaches 1,the resistivity of rapidly solidified Co-Sn alloys can be predicted theoretically.  相似文献   

9.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

10.
双辊薄带凝固过程的宏观-微观耦合数学模型   总被引:6,自引:0,他引:6  
以热焓法处理结晶潜热和以假设的流线边界划分网格节点,在对KGT枝晶生长动力学模型进行修正的基础上,引入异质形核模型和柱状晶等轴晶转变(CET)模型,建立了双辊薄带凝固过程的宏观-微观耦合数学模型.同时,以固相分数为媒介,采用宏观微观不同的网格尺寸和时间步长,通过对柱状晶生长前沿的追踪,实现了宏观-微观模型的耦合求解.实验表明:数学模型预测的薄带凝固组织中的柱状枝晶间距和取向度与实测值基本吻合,说明所建数学模型是可靠的,可用此模型研究工艺因素变化对薄带凝固组织的影响.  相似文献   

11.
建立了合金定向倾斜枝晶生长的相场模型,采用非均匀网格的自适应有限元法求解薄界面层厚度条件下的相场模型,研究了Al-Cu(w(Cu)=4%)合金的倾斜枝晶演化过程,定量分析了冷却速率、主晶间距对凝固组织的影响.结果表明:冷却速率、主晶间距和抽拉速度可以控制倾斜枝晶的生长角度,随着冷却速率的增加,枝晶的生长会偏离择优取角向...  相似文献   

12.
The Pb-17wt% Sb alloy was directionally solidified under two solidification conditions: with different temperature gradients (G=0.93–3.67 K/mm) at a constant growth rate (V=17.50 μm/s) and with different growth rates (V=8.3–497 μm/s) at a constant temperature gradient (G=3.67 K/mm) in a Bridgman furnace. Microstructure parameters, such as primary dendrite arm spacing (λ1), secondary dendrite arm spacing (λ2), and dendrite tip radius (R), were measured. The microhardness (Hv) and ultimate tensile strength (σ) of the directional solidification samples were also measured. The influences of solidification and microstructure parameters on Hv and σ were investigated. The results obtained in this work were compared with similar experimental researches in literatures. It is shown that the Hv and σ values increase with the increase of G and V, but decrease with the increase of λ1, λ2, and R.  相似文献   

13.
为了探讨移动电磁场对低碳钢凝固过程枝晶破碎的影响,进行了移动电磁场下的0.22%~0.34%C(质量分数)低碳钢浇铸凝固实验.对不同磁感应强度下铸坯凝固组织进行了观察,考察了二次枝晶分布,凝固过程冷却速度与二次枝晶间距的函数关系.同时考察了移动电磁场对铸坯柱状晶向等轴晶转变(CET)位置的影响,并对钢凝固过程CET发生时的凝固速度和固相率进行了计算.导出了移动电磁场下合金凝固过程枝晶破碎的临界条件,并通过低碳钢作实验验证,得到了低碳钢凝固CET发生时临界固相率和液相平均流速之间的关系.  相似文献   

14.
由于金属合金的不透明性, 研究者们无法实时捕捉到金属合金凝固过程中枝晶生长的动态行为, 也无法直接观察到电流对枝晶生长行为的动态调控过程. 采用同步辐射X 射线成像技术, 实时观察到了电流对枝晶生长形貌演变的动态调控过程. 成像结果表明, 直流电流能够显著抑制枝晶生长, 并促使枝晶尖端变平,随着电流增加, 枝晶尖端发生分裂现象, 这归因于枝晶尖端的电流拥挤以及溶质富集. 脉冲电流能够显著细化枝晶臂间距并影响其凝固进程, 主要原因是周期性的脉冲电流对液固界面产生了循环的热冲击和振荡扰动所致.  相似文献   

15.
利用正交试验的方法对熔体温度处理细化亚共晶Al-Si合金的凝固组织进行了研究,结果表明,经过熔体温度处理后,凝固组织中一次枝晶尺寸明显减小,长的树枝晶变为短的树枝晶或等轴晶,并且枝晶数量明显增多;二次枝晶臂间距变化不明显,从原子团簇的角度分析认为,这是由于高,低温熔体混合后,低温熔体中大的原子团簇得到细化,从而导致混合熔体中形核质点增殖的结果,研究同时发现,高,低温熔体的混合方式对熔体温度处理效果有直接影响,熔体的均匀混合有利于增大熔体凝固过冷度,减小临界晶核半径,促进凝固组织的细化。  相似文献   

16.
Al-La合金不连续枝晶组织形成机理   总被引:3,自引:0,他引:3  
在Al-La合金的自由凝固试样中,发现Al-35%La合金组织形貌的特殊性,其先结晶相Al11La3枝晶沿主干方向成分是不连续的. 为验证这种组织存在的真实性,采用定向凝固方法制备了不同冷却速度下的Al-35%La合金试样,结果显示出定向凝固Al-35%La合金中Al11La3枝晶沿主干方向成分是不连续的. 在此基础上,分析了化学成分与凝固速度对Al-La合金组织的影响,并初步探讨了这种不连续枝晶的形成机理.  相似文献   

17.
Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32–250.0 μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus. The values of eutectic spacing were measured from transverse sections of the samples. The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53, respectively. The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature. Microhardness of directionally solidified samples was also measured by using a microhardness test device. The dependency of the microhardness on growth rate is found as Hv=115.64V0.13. Afterwards, the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300–630 K. The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K), respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid.  相似文献   

18.
采用双辊薄带连铸技术制备了低碳微合金钢薄带,利用OM,SEM和TEM对铸态凝固组织、室温组织、析出及位错进行观察和分析.结果表明:低碳微合金钢铸带的凝固组织中二次枝晶间距约为12~15μm,相对于传统厚板坯和薄板坯连铸,铸带组织得到了明显细化.铸带的原奥氏体晶粒尺寸比较粗大,约为250~410μm,其组织由魏氏铁素体、珠光体和不规则铁素体组成.铸带组织中存在纳米级TiC析出和短棒状的渗碳体.TiC析出没有被薄带连铸的凝固过程及二次冷却过程明显抑制.铸带组织由于铸轧力及二次冷却速率不均匀导致大量位错的产生.  相似文献   

19.
Assisted by the mold preinstalled an alumina tube into seed segment, the influence of the original primary dendrite spacing of seed on the formation of stray grains at melt-back region was investigated during Ni-based single crystal casting using seeding method. The results showed that the interface reaction between the seed and mold as well as the formation of stray grains at the surface of seed were avoid using an alumina tube with surface roughness of 0.35 μm as the mold inner wall. As the original primary dendrite spacing of the seed decreased to less than 201 μm, the morphology of un-melted solid phase in semi-solid zone changed from isolated dendrite stem to the complex network, resulting in the inhibition of the formation of stray grains inside of the seed. The seed with original primary dendrite spacing of 201 μm was also successfully re-used to fabricate single crystal casting.  相似文献   

20.
The rapid solidification of undercooled liquid Ni_(45)Fe_(40)Ti_(15)alloy was realized by glass fluxing technique.The microstructure of this alloy consists of primaryγ-(Fe,Ni)phase and a small amount of interdendritic pseudobinary eutectic.The primaryγ-(Fe,Ni)phase transferred from coarse dendrite to fragmented dendrite and the lamellar eutectic became fractured with the increase of undercooling.The growth velocity ofγ-(Fe,Ni)dendrite increased following a power relation with the rise of undercooling.The addition of solute Ti suppressed the rapid growth ofγ-(Fe,Ni)dendrite,as compared with the calculation results of Fe-Ni alloy based on LKT model.The microhardness values of the alloy and the primaryγ-(Fe,Ni)phase increased by 1.5 times owing to the microstructural refinement caused by the rapid dendrite growth.The difference was enlarged as undercooling increases,resulting from the enhanced hardening effects on the alloy from the increased grain boundaries and the second phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号