首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
采用VOF多相流模型,运用CFD软件对矩形窄通道内临界热流密度(CHF)进行了数值模拟.分析了通道内流型变化,并绘制流型图.对影响临界热流密度的因素进行了研究,与相同工况下试验结果进行了对比,证明了模拟结果的可靠性.结果表明:与常规通道相比,矩形窄通道内流型只有泡状流、弹状流和环状流,受通道尺寸限制,汽泡生长、合并不充分;临界热流密度随质量流速的增加而增加,随L/De的增大不断减小;入口过冷度对于临界热流密度影响可忽略;在相同的通道尺寸及入口条件下,上升流的临界热流密度比下降流略大,并随着质量流速增加,流向影响逐渐缩小.  相似文献   

2.
对回路型重力热管蒸发段中氧化铜-水纳米流体的沸腾传热特性进行了试验,分别讨论了纳米颗粒的质量分数wCuO,工作压力p等参数对沸腾换热系数和临界热流密度的影响.结果表明:母液中添加适当浓度的纳米颗粒可以同时强化沸腾换热系数和临界热流密度;工作压力对沸腾换热系数有显著影响,而对临界热流密度的影响十分微弱;热管蒸发段的临界热流密度随wCuO的增加而增加,在wCuO>1.0%后保持稳定;而沸腾换热系数也随wCuO的增加而增加,在wCuO>1.0%后反而逐渐降低.临界热流密度强化机理主要来自于纳米颗粒在加热表面形成的吸附层;而沸腾换热系数强化与吸附层和纳米流体自身物性变化均有关系.  相似文献   

3.
运用VOF模型和用户自定义函数,对水在0.2 mm×20.0 mm微通道内的流动沸腾过程进行数值模拟,分析V形凹槽的槽深与开口宽度之比h/R、凹槽数量n对水在微通道中临界热流密度的作用.结果表明:入口水温T_(in)=369.00 K,流速v=0.2 m·s~(-1)的工况下,凹槽数量一定(n=30),h/R(R=0.02 mm)不同,微通道对应的临界热流密度有所差异;h/R分别为1,2,3,4时,相应的临界热流密度为400,375,500,450 kW·m~(-2),h/R=3时,对应的临界热流密度最高(500 kW·m~(-2));h/R为定值(h/R=3)时,增加凹槽数量可以提高临界热流密度,n分别为30,90和150时,对应的临界热流密度为500,525,575 kW·m~(-2);在一定条件下,采用适当的凹槽结构(h/R=3)、增加凹槽数量可以提高微通道流动沸腾的临界热流密度,有利于维持流动沸腾换热的可靠性.  相似文献   

4.
在气泡壅塞模型的基础上发展出了适合于压力容器下封头外壁的临界热流密度理论模型.模型中分别使用滑速比模型和能量平衡方程来计算气泡层和主流层的含气率,并采用局部条件法来处理非均匀热流的影响,模型计算与实验结果具有良好的一致性.参数效应分析表明:随着下封头半径增大,相同角度位置处的临界热流密度值会降低,这意味着对更大功率的先进压水堆保持压力容器完整性的热负荷裕量将降低,可能导致下封头失效.  相似文献   

5.
为了研究自然循环过冷沸腾条件下流动不稳定性和临界热流密度 ( CHF)的影响因素及其规律 ,以氟里昂作工质 ,在系统压力为 0 .9~ 2 .4MPa,入口过冷度为 -0 .61~-0 .0 8K,加热功率为 1.2~ 13 k W实验条件下 ,对自然循环过冷沸腾流动不稳定性和 CHF进行了实验研究。实验结果证实 ,自然循环系统内可能发生两类流动不稳定性 :高频声波型脉动和低频密度波型脉动。流动不稳定性的发生与整个系统的几何结构及总加热功率有关 ,而 CHF则主要取决于局部的流动参数和加热热流密度。得到了判断系统流动不稳定性的发生界限。修正的 Bowring关系式可以可靠地用于预测自然循环过冷沸腾条件下的临界热流密度  相似文献   

6.
为了研究大热流密度相变喷雾的冷却特性,搭建了以R134a为冷却工质的闭式循环喷雾实验台,开展了采用R134a工质的相变喷雾冷却性能实验。实验工况为:喷雾高度13mm,喷雾腔压力0.2MPa,喷嘴入口温度0℃,喷雾流量范围为0.210 7~0.355 8L/min。实验结果表明:当喷雾流量保持不变时,增大加热功率,热流密度增大,表面换热系数先快速升高最后有所下降;随着喷雾流量从0.210 7L/min增加到0.355 8L/min,临界热流密度呈现上升趋势;当流量为0.355 8L/min时,获得最高的临界热流密度(CHF)为94.75 W/cm2,此时冷却表面的壁面温度为35.42℃。这说明使用环保工质R134a作为冷却剂的喷雾冷却系统能同时满足高热流密度和低换热表面温度的要求,具有良好、稳定的换热冷却能力。  相似文献   

7.
微通道中临界热流密度的实验研究   总被引:5,自引:0,他引:5  
对当量直径0.5 mm,有效加热长度45.0 mm的微通道进行了临界热流密度的实验研究.表明临界热流密度随工质质量流速和进口过冷度的增加而增加.基于实验数据给出了临界热流密度与Weber数、进口过冷度的关联式.实验还发现微通道中的临界热流密度现象不同于常规通道.微通道中临界热流密度的产生是由于微通道的蒸汽阻塞.在达到临界热流密度之前,微通道的流动和传热主要是周期性的过冷流动沸腾,从微通道逸出的汽泡和进入微通道的液体反复交替冲刷微通道.一旦达到临界热流密度,微通道中的流动和传热主要是一个蒸汽周期性逸出的过程.一直持续到过热蒸汽的出现,直到最后整个微通道被过热蒸汽阻塞.  相似文献   

8.
随着电子器件的集成化和小型化,其散热量超过10 MW/m~2将成为现实,这超出了目前大功率系统中使用的单相冷却方案的上限,所以必须再次开发新的冷却方案.克服单相传热局限性的一种方法是转变为两相沸腾传热,而临界热流密度又是所有沸腾传热的上限值.因此,为了提高微通道内流动沸腾传热的临界热流密度,本文设计开发了非均匀导热性传热板.通过将两种不同导热性能的材料(铜和聚四氟乙烯)交替布置在靠近传热表面的传热板内,实现了传热表面的非均匀温度分布和异态相干沸腾模式(核态沸腾与膜态沸腾共存且相互干涉的状态).同时搭建了微通道流动沸腾实验系统,其微通道截面尺寸为1.84 mm×70.00 mm,通道长度为280.0 mm,传热板表面尺寸为10.0 mm×10.0 mm,流体工质为去离子水.在不同入口流速v=0.1 m/s、0.2 m/s、0.4 m/s和不同过冷度DT_(sub)=10.0 K、20.0 K、30.0 K条件下,研究了非均匀导热性传热板在微通道流动沸腾中的传热强化效果.结果表明,相对于单纯的核态沸腾状态,异态相干沸腾状态能够有效地提升流动沸腾传热的临界热流密度.此外,改变入口流速和过冷度对临界热流密度有明显影响且趋势相同,减小入口流速和过冷度都会增大临界热流密度的提升比例.在本文的实验条件范围内,在水的流速v=0.1 m/s、过冷度DT_(sub)=10.0 K的条件下,实现了最高约43.4%的临界热流密度提升比例.  相似文献   

9.
为了进一步提高交错排列柱状微结构表面的换热性能,通过改变柱状微结构中心距和形状以提高表面换热系数及临界热流密度。以FC-72为工质,对不同的交错排列柱状微结构硅片在3种过冷度(15、25、35K)下进行了池沸腾换热实验研究,并与同工况下光滑表面硅片的结果进行了对比。通过干腐蚀技术在硅片表面加工出宽×高为30μm×60μm、30μm×120μm的方柱微结构,中心距分别为45、60、75μm,以及直径为38μm、中心距为60μm、高度分别为60μm和120μm的圆柱微结构。实验结果表明,临界热流密度和沸腾换热系数并非随中心距的增大呈现出单调增或减的规律。中心距为45μm的表面在核态沸腾区具有更高的换热系数,而对于高度为60、120μm的方柱微结构,临界热流密度最高的分别是中心距为60μm的表面(54.6 W/cm~2)和中心距为120μm的表面(60.72 W/cm~2)。当方柱中心距与边长之比大于等于2时,增大中心距对临界热流密度影响很小,最大增加了2%;当方柱中心距与边长之比小于2时,增大中心距对临界热流密度有显著影响,最大增加了14%。当换热面积相同时,圆柱微结构的换热性能要好于方柱微结构,并且临界热流密度相比于方柱微结构表面和光滑表面分别最大提高了13%和124%。另外,临界热流密度随着过冷度的增大而增大,同时沸腾起始点有所滞后。  相似文献   

10.
为了获得相变喷雾冷却特性,设计并搭建了以R22为冷却剂的闭式循环喷雾冷却实验平台,研究了制冷剂R22的相变喷雾冷却性能。实验在喷雾高度为22 mm、喷雾腔压力维持在0.34MPa、喷嘴入口温度保持在-3℃的条件下进行。实验结果表明:当维持喷嘴入口压力为定值时,随着加热功率的增大,热流密度增大,表面换热系数先快速升高但在接近临界热流密度时有所下降;当调节入口压力时,随着喷嘴入口压力从0.6MPa升高至1.0MPa,临界热流密度呈现出先升高后降低的趋势;当入口压力为0.8MPa时,系统所能达到的临界热流密度最高,为276.1W.cm-2,相应的喷雾冷却壁面温度为26.8℃,说明当使用R22为喷雾介质时,文中实验系统具有高热流密度及低冷却表面温度的显著特点。  相似文献   

11.
对高温平板滞止区内饱和水喷流冲击沸腾的临界热流密度进行了理论解析和实验研究。根据气液两相流稳定性理论得到了气泡层下最大液膜底层厚度,并由最大液膜底层厚度和液膜平均流速,建立了一个预示临界热流密度的半理论方程。方程系数由稳态实验数据拟合得到。研究结果证明,临界热流密度取决于滞止冲击速度和喷流直径,半理论半经验式能较好地预示实验结果。  相似文献   

12.
圆形液体浸没射流冲击核沸腾传热的实验研究   总被引:1,自引:0,他引:1  
以R113为工质,通过实验系统研究了圆形浸没射流冲击下射流出口速度、喷嘴直径、喷嘴至冲击板距离、液体流动方向及过冷度等对核沸腾传热曲线及临界热流密度的影响.结果表明:同一过冷度下的池核沸腾和冲击核沸腾曲线可以用统一的关联式来表达;提出的过渡沸腾传热表达式可以很好的用来关联实验数据;而临界热流密度随着速度增加及离驻点距离的减小而提高.  相似文献   

13.
导出了包含流体湿润性能影响的临界过热度和临界热流密度的计算式.发现随着流体湿润性能的提高,产生沸腾危机所需的过热度和热流密度相应增加;分析了不同工质对和不同表面粗糙度对流体湿润性能以及沸腾危机的影响.分析计算的结果与现有数据资料吻合较好.  相似文献   

14.
针对船舰核反应堆内板式燃料狭窄通道间高温高压条件下沸腾传热问题,通过试验的方法对并联窄矩形通道内去离子水上升流动沸腾传热和流量分配规律展开了研究。设计了板式燃料电加热模拟体,制作了适用于高参数下的并联矩形窄缝通道流通结构,解决了高温高压下试验段密封、绝缘和热膨胀等问题。试验段本体为宽高比39.4的并联矩形通道,试验工况为入口压力2.1~10 MPa、入口温度80~299℃、质量流速1 000~1 500 kg/(m~2·s)、热流密度100~300 kW/m~2。结果表明:2毫米级窄缝矩形通道内单相传热特性与常规圆形通道内传热规律无明显差异;通道内工质沸腾后,热流密度成为沸腾传热主导因素,质量流速对换热特性影响减弱;从壁温、质量流速、热流密度和压力分析双通道传热特性差异,发现相同工况条件下双通道相同位置传热系数偏差不超过±7%,从传热角度看两个并联矩形通道流量分配趋于均匀;将试验数据与5个现存沸腾传热关联式进行了对比,并以Kim公式为基础对关联式进行了改进,拟合得到一个新关联式,改进后的关联式与试验数据吻合良好,分别有77.1%、96.4%的预测值与试验值偏差在±10%、±20%范围内。  相似文献   

15.
为探究采用纳米流体作为冷却剂时,下朝向临界热流密度(critical heat flux,CHF)的强化效果和不同粗糙度表面的临界热流密度强化特性。实验制备了4种纳米流体,利用扫描电镜和纳米粒度分析仪分别检测纳米颗粒粒径和基液中颗粒分散状况。试验段采用316不锈钢钢板,以恒电流控制电加热方式进行常压下朝向水平0°池沸腾实验。实验结果表明:体积分数为0.001%的二氧化钛纳米流体的临界热流密度强化效果最为明显,约为61%;表面粗糙度(Ra)在0.086~1.765μm时,临界热流密度强化效果随Ra增加而降低,当Ra达到2.287μm时,所对应的CHF强化效果出现增加趋势。  相似文献   

16.
针对先进动力装置利用航空煤油实现再生冷却的现实需求,建立了矩形冷却通道流/固/热耦合的三维数值模型,分析了入口质量流量、压力、热流密度等工况条件对矩形通道内航空煤油流动传热特性参数的影响。结果表明:增大质量流量和减小热流密度都会提升航空煤油的换热能力;在一定压力范围内,压力对航空煤油换热的影响不明显,但随着压力的增加,煤油的换热能力变差;由于传热恶化的发生,上述工况对压力损失和摩擦阻力的影响较为复杂。  相似文献   

17.
实验研究了常压去离子水在不同高度的微小间隙通道内的流动沸腾特性.实验热流密度为0~206 W/cm2,质流密度为200~400 kg/(m2·s),间隙为1 mm和2 mm.结果显示,随着实验条件的变化,通道内出现了泡状流、清扫流、搅拌流,且在清扫流早期观察到不稳定流动现象.此外,间隙高度降低促进了流型的过渡,加快了不稳定流动的进程.1 mm通道内核态沸腾起始点的热流密度低于2 mm通道,表明间隙高度的降低更有利于气泡在低热流密度下成核;1 mm通道的过冷沸腾传热系数最高为2 mm通道的1.7倍,2 mm通道内饱和沸腾传热系数略高于1 mm通道.表明低热流密度下过冷沸腾时小通道具有更好的传热性能,高热流密度下饱和沸腾时大通道的传热稍具优势,同时表明间隙高度造成的传热差异随热流密度增大先增大后变小;1 mm通道内临界热流密度为2 mm通道的83%,表明间隙高度的降低会使得临界热流密度降低.  相似文献   

18.
为揭示加热面尺寸对饱和池沸腾换热性能的影响,对8种不同尺寸光滑硅片表面在FC-72中的池沸腾换热性能进行了实验研究,通过高速相机观察了不同热流密度下各尺寸硅片表面的气泡动力学行为,分析了加热面尺寸对汽泡成核、脱离特性和换热系数的影响。结果表明,自然对流区内,相同热流密度条件下加热面尺寸越大,硅片对液体的热对流扰动越小,壁温越高且换热系数越小;随热流密度增大,换热面周边最先产生汽泡,大尺寸换热面与绝热胶的接触周长更大,产生的缺陷和凹坑能捕捉更多气体,因此率先进入核态沸腾。核态沸腾区内,小尺寸加热面汽泡脱离直径小、脱离频率高,换热性能好。高热流密度范围内,大尺寸表面的汽泡脱离直径和脱离频率随热流密度增大而迅速增大,表面换热增强。临界沸腾点时,换热系数随加热面尺寸的增加呈先增大再减小最后缓慢增大的变化趋势。  相似文献   

19.
针对新一代发动机热防护所采用的再生主动冷却技术中的传热问题,对超临界压力下碳氢化合物的传热特性进行了实验研究。利用主流温度、内壁温度、传热系数等划分指标,量化了正常传热、传热强化、传热弱化3个阶段的区间划分;定义超临界压力下发生传热弱化时对应的热流密度为极限热流密度,对其影响因素进行研究,发现压力越高、质量流量越大、加热入口温度越低,极限热流密度越高;采用拟沸腾数对极限热流密度进行表征,并发现拟沸腾数与入口温度和压力相关,与雷诺数弱相关;基于实验数据,采用量纲分析方法得到综合影响因素下极限热流密度的预测公式,数据预测偏差在±10%以内。该研究结果可用于预测传热弱化现象的发生,为飞行器换热结构设计提供理论依据,进而保证飞行器整体的安全运行。  相似文献   

20.
为了研究制冷剂R410A在5 mm内螺纹铜管内的沸腾换热及压降特性,以磁驱泵提供循环动力、均匀缠绕在测试段上的电加热丝提供热量以及冷水机组提供循环冷量的方式搭建了测试实验台,并对R410A在5 mm内螺纹管内的流动沸腾换热系数及压降进行了测试.分析讨论了不同蒸发温度下,制冷剂质量流量密度和管壁热流密度对管内制冷剂流动沸腾换热系数以及压降特性的影响.研究结果表明:5mm内螺纹管内R410A的流动沸腾换热系数分别在质量流量密度位于191.28和344.3kg/(m2·s)处达到峰值;其流动沸腾换热系数随着管壁热流密度增大最初呈现增大的趋势,在热流密度30 kW/m2后逐渐平稳;而R410A在5 mm内螺纹管内的压降均随质量流量密度和管壁热流密度的增大而增大,其中压降和管壁热流密度的关系呈较为明显的线性变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号