首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Regulation of glucose homeostasis by insulin depends on the maintenance of normal beta-cell mass and function. Insulin-like growth factor 1 (Igf1) has been implicated in islet development and differentiated function, but the factors controlling this process are poorly understood. Pancreatic islets produce Igf1 and Igf2, which bind to specific receptors on beta-cells. Igf1 has been shown to influence beta-cell apoptosis, and both Igf1 and Igf2 increase islet growth; Igf2 does so in a manner additive with fibroblast growth factor 2 (ref. 10). When mice deficient for the Igf1 receptor (Igf1r(+/-)) are bred with mice lacking insulin receptor substrate 2 (Irs2(-/-)), the resulting compound knockout mice show a reduction in mass of beta-cells similar to that observed in pancreas of Igf1r(-/-) mice (ref. 11), suggesting a role for Igf1r in growth of beta-cells. It is possible, however, that the effects in these mice occur secondary to changes in vascular endothelium or in the pancreatic ductal cells, or because of a decrease in the effects of other hormones implicated in islet growth. To directly define the role of Igf1, we have created a mouse with a beta-cell-specific knockout of Igf1r (betaIgf1r(-/-)). These mice show normal growth and development of beta-cells, but have reduced expression of Slc2a2 (also known as Glut2) and Gck (encoding glucokinase) in beta-cells, which results in defective glucose-stimulated insulin secretion and impaired glucose tolerance. Thus, Igf1r is not crucial for islet beta-cell development, but participates in control of differentiated function.  相似文献   

2.
Insulin receptor substrates (Irs proteins) mediate the pleiotropic effects of insulin and Igf-1 (insulin-like growth factor-1), including regulation of glucose homeostasis and cell growth and survival. We intercrossed mice heterozygous for two null alleles (Irs1+/- and Irs2+/-) and investigated growth and glucose metabolism in mice with viable genotypes. Our experiments revealed that Irs-1 and Irs-2 are critical for embryonic and post-natal growth, with Irs-1 having the predominant role. By contrast, both Irs-1 and Irs-2 function in peripheral carbohydrate metabolism, but Irs-2 has the major role in beta-cell development and compensation for peripheral insulin resistance. To establish a role for the Igf-1 receptor in beta-cells, we intercrossed mice heterozygous for null alleles of Igf1r and Irs2. Our results reveal that Igf-1 receptors promote beta-cell development and survival through the Irs-2 signalling pathway. Thus, Irs-2 integrates the effects of insulin in peripheral target tissues with Igf-1 in pancreatic beta-cells to maintain glucose homeostasis.  相似文献   

3.
4.
5.
Mice carrying mitochondrial DNA (mtDNA) with pathogenic mutations would provide a system in which to study how mutant mtDNAs are transmitted and distributed in tissues, resulting in expression of mitochondrial diseases. However, no effective procedures are available for the generation of these mice. Isolation of mouse cells without mtDNA (rho0) enabled us to trap mutant mtDNA that had accumulated in somatic tissues into rho0 cells repopulated with mtDNA (cybrids). We isolated respiration-deficient cybrids with mtDNA carrying a deletion and introduced this mtDNA into fertilized eggs. The mutant mtDNA was transmitted maternally, and its accumulation induced mitochondrial dysfunction in various tissues. Moreover, most of these mice died because of renal failure, suggesting the involvement of mtDNA mutations in the pathogeneses of new diseases.  相似文献   

6.
7.
8.
Large-scale deletions of mitochondrial DNA (mtDNA) are associated with a subgroup of mitochondrial encephalomyopathies. We studied seven patients with Kearns-Sayre syndrome or isolated ocular myopathy who harboured a sub-population of partially-deleted mitochondrial genomes in skeletal muscle. Variable cytochrome c oxidase (COX) deficiencies and reduction of mitochondrially-encoded polypeptides were found in affected muscle fibres, but while many COX-deficient fibres had increased levels of mutant mtDNA, they almost invariably had reduced levels of normal mtDNA. Our results suggest that a specific ratio between mutant and wild-type mitochondrial genomes is the most important determinant of a focal respiratory chain deficiency, even though absolute copy numbers may vary widely.  相似文献   

9.
Extensive complementation between fused mitochondria is indicated by recombination of 'parental' mitochondrial (mt) DNA (ref. 1,2) of yeast and plant cells. It has been difficult, however, to demonstrate the occurrence of complementation between fused mitochondria in mammalian species through the presence of recombinant mtDNA molecules, because sequence of mtDNA throughout an individual tends to be uniform owing to its strictly maternal inheritance. We isolated two types of respiration-deficient cell lines, with pathogenic mutations in mitochondrial tRNAIle or tRNALeu(UUR) genes from patients with mitochondrial diseases. The coexistence of their mitochondria within hybrids restored their normal morphology and respiratory enzyme activity by 10-14 days after fusion, indicating the presence of an extensive and continuous exchange of genetic contents between the mitochondria. This complementation between fused mitochondria may represent a defence of highly oxidative organelles against mitochondrial dysfunction caused by the accumulation of mtDNA lesions with age.  相似文献   

10.
Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.  相似文献   

11.
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.  相似文献   

12.
Mammalian mitochondrial DNA (mtDNA) is inherited principally down the maternal line, but the mechanisms involved are not fully understood. Females harboring a mixture of mutant and wild-type mtDNA (heteroplasmy) transmit a varying proportion of mutant mtDNA to their offspring. In humans with mtDNA disorders, the proportion of mutated mtDNA inherited from the mother correlates with disease severity. Rapid changes in allele frequency can occur in a single generation. This could be due to a marked reduction in the number of mtDNA molecules being transmitted from mother to offspring (the mitochondrial genetic bottleneck), to the partitioning of mtDNA into homoplasmic segregating units, or to the selection of a group of mtDNA molecules to re-populate the next generation. Here we show that the partitioning of mtDNA molecules into different cells before and after implantation, followed by the segregation of replicating mtDNA between proliferating primordial germ cells, is responsible for the different levels of heteroplasmy seen in the offspring of heteroplasmic female mice.  相似文献   

13.
The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.  相似文献   

14.
In millions of people, obesity leads to type 2 diabetes (T2D; also known as non-insulin-dependent diabetes mellitus). During the early stages of juvenile obesity, the increase of insulin secretion in proportion to accumulated fat balances insulin resistance and protects patients from hyperglycaemia. After several decades, however,beta-cell function deteriorates and T2D develops in approximately 20% of obese patients. In modern societies, obesity has thus become the leading risk factor for T2D (ref. 5). The factors that predispose obese patients to alteration of insulin secretion upon gaining weight remain unknown. To determine which genetic factors predispose obese patients to beta-cell dysfunction, and possibly T2D, we studied single-nucleotide polymorphisms (SNPs) in the region of the insulin gene (INS) among 615 obese children. We found that, in the early phase of obesity, alleles of the INS variable number of tandem repeat (VNTR) locus are associated with different effects of body fatness on insulin secretion. Young obese patients homozygous for class I VNTR alleles secrete more insulin than those with other genotypes.  相似文献   

15.
16.
Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy.   总被引:19,自引:0,他引:19  
The mitochondrial deoxyribonucleotide (dNTP) pool is separated from the cytosolic pool because the mitochondria inner membrane is impermeable to charged molecules. The mitochondrial pool is maintained by either import of cytosolic dNTPs through dedicated transporters or by salvaging deoxynucleosides within the mitochondria; apparently, enzymes of the de novo dNTP synthesis pathway are not present in the mitochondria. In non-replicating cells, where cytosolic dNTP synthesis is down-regulated, mtDNA synthesis depends solely on the mitochondrial salvage pathway enzymes, the deoxyribonucleosides kinases. Two of the four human deoxyribonucleoside kinases, deoxyguanosine kinase (dGK) and thymidine kinase-2 (TK2), are expressed in mitochondria. Human dGK efficiently phosphorylates deoxyguanosine and deoxyadenosine, whereas TK2 phosphorylates deoxythymidine, deoxycytidine and deoxyuridine. Here we identify two mutations in TK2, histidine 90 to asparagine and isoleucine 181 to asparagine, in four individuals who developed devastating myopathy and depletion of muscular mitochondrial DNA in infancy. In these individuals, the activity of TK2 in muscle mitochondria is reduced to 14-45% of the mean value in healthy control individuals. Mutations in TK2 represent a new etiology for mitochondrial DNA depletion, underscoring the importance of the mitochondrial dNTP pool in the pathogenesis of mitochondrial depletion.  相似文献   

17.
Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.   总被引:20,自引:0,他引:20  
The initial stages of pancreatic development occur early during mammalian embryogenesis, but the genes governing this process remain largely unknown. The homeodomain protein Pdx1 is expressed in the developing pancreatic anlagen from the approximately 10-somite stage, and mutations in the gene Pdx1 prevent the development of the pancreas. The initial stages of pancreatic development, however, still occur in Pdx1-deficient mice. Hlxb9 (encoding Hb9; ref. 6) is a homeobox gene that in humans has been linked to dominant inherited sacral agenesis and we show here that Hb9 is expressed at early stages of mouse pancreatic development and later in differentiated beta-cells. Hlxb9 has an essential function in the initial stages of pancreatic development. In absence of Hlxb9 expression, the dorsal region of the gut epithelium fails to initiate a pancreatic differentiation program. In contrast, the ventral pancreatic endoderm develops but exhibits a later and more subtle perturbation in beta-cell differentiation and in islet cell organization. Thus, dorsally Hlxb9 is required for specifying the gut epithelium to a pancreatic fate and ventrally for ensuring proper endocrine cell differentiation.  相似文献   

18.
We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest Pvalue (6.7 x 10(-13), odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 x 10(-42) (OR = 1.40; 95% CI = 1.34-1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of beta-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.  相似文献   

19.
20.
Johanson-Blizzard syndrome (OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, multiple malformations such as nasal wing aplasia, and frequent mental retardation. We mapped the disease-associated locus to chromosome 15q14-21.1 and identified mutations, mostly truncating ones, in the gene UBR1 in 12 unrelated families with Johanson-Blizzard syndrome. UBR1 encodes one of at least four functionally overlapping E3 ubiquitin ligases of the N-end rule pathway, a conserved proteolytic system whose substrates include proteins with destabilizing N-terminal residues. Pancreas of individuals with Johanson-Blizzard syndrome did not express UBR1 and had intrauterine-onset destructive pancreatitis. In addition, we found that Ubr1(-/-) mice, whose previously reported phenotypes include reduced weight and behavioral abnormalities, had an exocrine pancreatic insufficiency, with impaired stimulus-secretion coupling and increased susceptibility to pancreatic injury. Our findings indicate that deficiency of UBR1 perturbs the pancreas' acinar cells and other organs, presumably owing to metabolic stabilization of specific substrates of the N-end rule pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号