共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
【目的】针对Mean squared error(MSE)作为损失函数在人眼感知方面存在局限性,以及基于卷积神经网络的图像超分辨率(Super-resolution,SR)算法生成的图像存在参数较多、计算量较大、训练时间较长、纹理模糊等问题,设计基于深层卷积神经网络的单幅图像超分辨率重建模型。【方法】使用ImageNet预先训练的大型卷积神经网络Visual geometry group(VGG)模型提取图像特征,利用该特征设计视觉感知损失函数进行训练学习,引入亚像素卷积层(Sub-pixel convolution)替换上采样层,缓解生成图像的棋盘效应。【结果】设计的模型对放大两倍的图像进行超分辨率修复,与其他4种超分辨率重建模型的Peak signal to noise ratio(PSNR)值接近,且生成图像的视觉效果更加清晰逼真,细节更加细腻。【结论】该模型可以实现输入不同大小的低分辨率图像而不必多次训练学习不同比例的放大模型,可以实现对不同放大倍数图像的训练和预测,在保持一定PSNR正确率的前提下,放大后的超分辨率图像能够恢复更多纹理细节和更佳视觉效果。 相似文献
3.
《云南民族大学学报(自然科学版)》2019,(6):618-623
针对单幅图像超分辨率重建问题(SISR),提出了一种新的基于Dirac残差的超分辨率重建算法.算法使用全局跳跃重建层来直接利用输入LR图像的低频特征,通过多个dirac残差块来自适应学习输入LR图像的高频特征,通过亚像素卷积进行图像重建.算法通过权重参数化来改进残差层,同时使用输入图像的卷积特征与残差网络学习特征结合进行重建.实验采用Adam优化器进行网络训练.使用L1范数作为损失函数.在PSNR、SSIM和视觉效果与其他先进算法进行对比,实验结果表明,在常用测试集上与其他深度学习算法相比有较大提高. 相似文献
4.
卷积神经网络由于其强大的非线性表达能力在自然图像的处理问题中已经获得了非常大的成功。传统的稀疏表示方法利用精确配准的高分辨率多光谱图像,从而限制了实际应用。针对传统方法的不足,本文提出了一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应的多光谱图像。我们构建深度残差卷积神经网络挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系。构建的深度学习网络串联多个残差块,并去除一些不必要的模块,如批标准化层,每个残差块只包含两个卷积层,这样在保证模型效果的同时又加快模型的效率。此外,因为遥感图像训练数据缺乏,我们充分挖掘自然图像和高光谱图像之间的相似性,利用自然图像样本训练卷积神经网络,进一步利用迁移学习将训练好的网络模型引入到高分辨率遥感图像超分辨问题上,解决了训练样本缺乏问题。最后,基于实际的遥感数据超分辨实验结果表明,本文所提出的方法具有良好的性能,能得到较好的超分辨效果。 相似文献
5.
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升.现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力.为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络... 相似文献
6.
从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,重建网络中子像素卷积神经网络作为上采样算子.针对不能充分利用多级特征图的问题,采用跳跃连接和特征图联结在特征提取网络末端跨通道融合特征图,同时降低特征图的维度.并在此基础上再次提取特征图应用于重建.实验结果表明,算法在PSNR、SSIM和人类视觉效果上与其他基于深度学习的算法相比有着显著的提高. 相似文献
7.
针对无人机巡检图像模糊、分辨率低等问题,利用深度残差卷积神经网络(VDRCNN:Very Deep Residual Convolutional Neural Network)理论,提出了一种无人机巡检图像的超分辨率重构方法。该算法模型由超分辨率加深网络(VDSR:Very Deep Network for Super-Resolution)和残差结构组成,同时结合批量组归一化和Adam优化器以获得更好的重建效果。在此基础上,构建电力部件检测数据集,通过恰当设置网络参数,实现针对模糊电力部件图像的高分辨率重构。实验结果表明,基于VDRCNN的超分辨率方法重建出的图像纹理更丰富、视觉效果更逼真,在峰值信噪比和结构相似度上分别有2.95 dB和3.79%的提升,明显优于传统检测方法。所提出的基于VDRCNN的电力巡检图像超分辨率重构方法对解决电力巡检实际问题具有一定的应用价值。 相似文献
8.
针对现有基于深度学习的自然图像超分辨率算法在图像高频细节重建方面的不足,提出了一种更注重图像高频细节重建的双通道残差网络。使用带有通道注意力机制的残差结构作为网络的主通道;为了在重建过程中更好地保留原始图像的几何结构和边缘信息,使用自适应结构化卷积设计了网络的辅助通道,以此构建的双通道残差网络在学习过程中会有更强的高频信息捕获能力;为了使重建图像效果更加符合人眼的主观视觉感受,结合使用L1损失函数和多尺度结构相似度损失函数来训练网络,使网络在训练过程中能够较好地保留图像的视觉效果。实验结果表明:在主通道外并构基于结构化卷积的辅助通道可以使重建图像的峰值信噪比提高2 dB;结合使用L1损失函数和多尺度结构相似度损失函数可以使重建图像的峰值信噪比提高3 dB、结构相似性提高0.5;与同类网络客观定量相比,所提网络在两个公开数据集上取得的效果更优。 相似文献
9.
《云南民族大学学报(自然科学版)》2019,(6):597-605
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望. 相似文献
10.
基于像素及梯度域双层深度卷积神经网络的页岩图像超分辨率重建 总被引:2,自引:1,他引:2
实际采集的页岩图像存在分辨率低等不足,有时难以满足实际应用的需求。针对此问题,构建了一种基于双层深度卷积神经网络的页岩图像超分辨率重建算法。算法以深度卷积神经网络为基础,引入残差训练及批规范化层来加速网络的收敛,并且在此神经网络的基础上提出图像像素域及梯度域结合的页岩图像超分辨率重建算法。算法大致过程为首先利用像素域的卷积神经网络对输入的低分辨率页岩图像进行上采样;然后对上采样图像提取梯度信息并利用梯度域的卷积神经网络对其进行转换;最后利用转换后的梯度信息作为正则项来约束高分辨率图像的重建,从而得到重建的高分辨率页岩图像。实验表明,与主流的超分辨率重建算法相比,重建得到的页岩图像具有更好的主观视觉效果与更高的客观评价参数,更利于后续的处理及分析。 相似文献
11.
提出了一种基于神经网络的超分辨率重构算法.首先用基于l1范数的最小全变分约束对输入的低分辨率图像进行去模糊处理,得到初始复原图像;再根据结构相似度原则选择初始复原图像在训练集中最相近的M幅图像,并加权求和作为神经网络的初始输出;结合贝叶斯后验概率,用RBF神经网络进行迭代训练,最后输出复原的高分辨率图像.算法充分利用了不同人脸图像之间的相似性,并加入了最小全变分约束,以保持图像边缘的奇异性及非边缘的平滑性.实验结果表明:算法能有效提高下采样及模糊人脸图像的分辨率,具有一定的实用价值. 相似文献
12.
卷积神经网络的研究进展综述 总被引:3,自引:0,他引:3
深度学习(deep learning,DL)强大的建模和表征能力很好地解决了特征表达能力不足和维数灾难等模式识别方向的关键问题,受到各国学者的广泛关注.而仿生物视觉系统的卷积神经网络(convolutional neural network,CNN)是DL中最先成功的案例,其局部感受野、权值共享和降采样三个特点使之成为智能机器视觉领域的研究热点.对此,本文综述CNN最新研究成果,介绍其发展历程、最新理论模型及其在语音、图像和视频中的应用,并对CNN未来的发展潜力和发展方向进行了展望和总结. 相似文献
13.
当前的图像特征识别大多采用的是传统的机器学习方法与卷积神经网络方法。传统的机器学习对图像识别的研究,特征提取多是通过人工完成,泛化能力不够强。最早的卷积神经网络也存在诸多缺陷,如硬件要求高,需要的训练样本量大,训练时间长。针对以上问题,提出了一种改进的神经网络模型,在LeNet-5模型的基础上并在保证识别率的情况下,简化网络结构,提高训练速度。将改进的网络结构在MINIST字符库上进行识别实验,分析网络结构在不同参量中的识别能力,并与传统算法进行对比分析。结果表明提出的改进结构在当前识别正确率上,明显高于传统的识别算法,为当前的图像识别提供新的参考。 相似文献
14.
基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积核的通道上建立了稠密连接,并构建了带有动态调节能力的层间融合结构.这种结构的设计使得小规模卷积神经网络便能获得图片特征信息的全面感知能力.实验结果表明,DMCN重建效果优于目前多数具有代表性的重建算法. 相似文献
15.
研究剪接位点可以更深入地探索剪接机制和基因预测方法,准确预测剪接位点至关重要。基于深度学习技术提出一种新的预测方法,无需人工提取样本特征,以基因序列的K-MER编码向量作为输入,采用训练后的卷积神经网络(CNN)模型进行预测。基于人类基因HS3D供体数据集,与传统机器学习方法进行预测比较,结果表明预测模型的主要性能指标,包含马修斯相关系数(MCC)、灵敏度(SN)均超过传统的机器学习方法。 相似文献
16.
为获取样本的多样性特征,提出了一种改进的卷积神经网络结构。该网络中引入多层递归神经网络,利用卷积神经网络提取输入图像的浅层特征,同时利用卷积神经网络和递归神经网络并行提取高层特征,最后将两种网络学习到的特征进行融合输入到分类器中分类。利用迁移学习理论解决小样本集数据训练不足的问题,并将这种卷积神经网络结构应用于石油物资管线钢号识别中。实验探究了递归神经网络个数与卷积核个数对网络性能的影响,实验结果表明,改进的网络结构与其它网络进行对比,错误率降低了 3% 。 相似文献
17.
为实现笔画的分组和识别,现有的草图识别算法通常会采用限制用户的绘图习惯来达到目的.该文提出了利用贝叶斯网络和卷积神经网络(CNN)的草图识别方法解决此问题.首先,使用高斯低通滤波器处理输入草图,得到更平滑的图像.然后将连续输入的笔划分为两部分,分别使用贝叶斯网络和卷积神经网络对分割后的笔画进行识别,当笔画的可靠性大于阈值时,以贝叶斯网络的识别结果为准,反之采用CNN的识别结果.实验结果表明,该文算法在电路符号绘制过程中的识别率和绘制完成后的识别率均取得了较好的结果.该文算法具有良好的应用前景. 相似文献
18.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献
19.
在高分辨率遥感图像目标检测中,受云雾、光照、复杂背景、噪声等因素影响,现有目标检测方法虚警率高、速度慢、精确度低.为此提出基于深度神经网络剪枝的两阶段目标检测(object detection based on deep pruning,ODDP)方法.首先,给出深度神经网络剪枝方法,基于深度神经网络剪枝分别提出自主学习区域提取网络算法与优化训练分类网络算法;然后,将上述两算法用于卷积神经网络,得到两阶段目标检测模型.实验结果表明,在NWPU VHR-10高分辨率遥感数据集上,相比现有目标检测方法,ODDP的检测速度和精度均有一定提升. 相似文献
20.
精细图像分类不同于传统的图像分类,由于精细图像自身的类间相似性和类内差异性,传统的基于手工特征和局部特征组合方法已经很难完整地表达精细图像的特征,因此提出了一种基于改进的深度卷积神经网络模型.由于深度卷积神经网络结构参数和神经元数量巨大,训练模型困难,所以采用高斯分布对前6层参数初始化,其中激活函数采用校正之后的Relus-Softplus函数,在花卉图像数据库OXford-102 flowers中TOP1准确率达到85.75%,TOP3准确率达到了94.50%.实验结果表明:该模型在中等规模数据集上比传统方法优势明显,且比未改进的CNN模型识别率高. 相似文献