首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高储层参数的预测精度,提出一种利用测井资料,结合多元线性回归和神经网络预测储层参数的新的复合方法,具体分两步:(1)通过多元线性回归分析建立回归值y'的计算模型,将y'作为储层参数的初步预测值;(2)通过RBF神经网络建立y'的残差Δd的预测模型,将预测结果Δd作为y'的非线性误差补偿,最终建立储层参数解释模型,y=y'+Δd。基于该方法,结合测井资料和岩心数据,建立了鄂尔多斯盆地某致密砂岩气田M3井区S_2~2、T_2~2段孔隙度和含水饱和度的测井解释模型,结果显示,新方法建立的模型预测值与S_2~2、T_2~2段实际岩心孔隙度、含水饱和度值的平均相对误差均小于17%,明显优于单独根据多元线性回归分析或RBF神经网络建立的解释模型,预测精度更高。  相似文献   

2.
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,具有训练速度快、全局最优和泛化能力优异等优点。采用1991~2013年上证指数对算法性能进行训练,2014年数据做测试,对100个测试数据仿真结果表明,复相关系数高达0.9935,极限学习机是一种预测精度高、误差小的证券指数预测算法,预测结果可以为用户提供有价值的参考意见。  相似文献   

3.
在分析灰色线性回归组合预测模型基本原理的基础上,利用MATLAB强大的计算功能,实现组合预测模型算法。通过实例分析发现拟合结果对实测值出现一定的波动性,故通过建立实测值与模拟值之间的比值序列,再利用BP神经网络模型对该比值序列进行建模优化,以进一步优化组合模型的预测精度。最后实例证明了该优化模型具有较高的拟合和预测精度,是一种可行、有效的优型变形数据分析模型。  相似文献   

4.
针对建筑物地基沉降的机理以及RBF(Radial Basis Function,径向基函数)神经网络能够有效描述不确定性问题和解决复杂非线性问题等特点,通过反复试验,优化设计,建立了RBF神经网络,并用该网络优化灰线性回归预测模型,建立RBF灰线性组合预测模型。通过工程实例,比较分析了单一灰色模型、灰线性回归模型、RBF优化的灰线性回归模型的预测精度。结果表明,RBF优化后的灰线性回归预测模型精度优于灰色模型、灰线性回归模型,预测中误差达到0.0014 mm。径向基神经网络优化后的灰线性模型能更好地反映建筑物沉降的总体趋势及规律。  相似文献   

5.
为了提高预测的精度,将神经网络组合预测模型应用于能源消费总量预测中,通过建立RBF、ELM、BP神经网络预测模型,用熵值法确定组合预测模型的加权系数,建立神经网络组合预测模型.利用安徽省统计年鉴获得的1991~2007年安徽省能源消费总量进行检验仿真,结果表明组合预测模型的误差较小,精度较高,预测结果更接近于实际情况.  相似文献   

6.
为提高单井能力预测的精度和可靠性,提出利用地震属性数据,结合多元线性回归方法和BP神经网络方法进行预测。首先提取了研究区目的层的地震属性,然后利用多元线性回归方法和BP神经网络方法建立了单井能力与地质、地震属性之间的函数关系,得出了半定量-定量化的单井产量设计模型,并且验证了模型的预测结果。结果显示:单井能力预测精度总体在80%以上,其中BP神经网络模型预测精度更高,吻合度更好,证明了利用多种地震属性联合预测单井产能是一种卓有成效的方法。  相似文献   

7.
文章利用MATLAB编程软件,分别建立RBF神经网络和BP神经网络,采用《中国人口统计年鉴》中1999-2003年男性人口总数量作为样本,分别对RBF神经网络和BP神经网络进行训练,并预测后5年后男性人口数量.结果表明这两种方法预测人口均是可行的,效果较好,误差很小.  相似文献   

8.
ELM(极限学习机)是一种新型的前馈神经网络,可有效处理函数的回归问题.针对ELM学习算法隐含层输出可能存在的复共线性问题,提出了ELM岭回归(ELMRR)软测量建模方法.该算法利用岭回归方法代替原有的线性回归算法,以误差平方和均值为性能指标,采用粒子群优化算法确定最佳岭参数,克服了传统岭回归算法最佳岭参数难以确定的缺...  相似文献   

9.
本文利用线性回归模型中单变点估计法,逐步调整法,得到了线性回归模型中的多变点估计量的可行方法。  相似文献   

10.
鲁棒区间回归分析的神经网络学习算法   总被引:1,自引:0,他引:1  
在许多工程实践问题中,区间回归分析是处理区间数据的一个重要手段。文献中用神经网络实现的区间回归分析都假定给定的训练数据是无噪的。当训练数据被污染时,这些方法的性能将急剧下降。本文针对一种区间回归的神经网络实现方法,提出了两种新的神经网络学习算法,能够有效地从有噪训练数据里建立一个鲁棒式的非线性区间回归模型。所提出的学习算法充分利用了对训练数据质量的估计知识。仿真结果表明了这种方法的有效性。  相似文献   

11.
基金市场的活跃程度直接影响基金净值的变动,市场内部的影响因素具有较强的非线性特征,神经网络模型强大的非线性处理功能能够更为精准地预测基金净值的走势.本文采用BP神经网络和RBF神经网络对华夏成长基金进行实证分析,比较2种方法的预测精度.实证结果表明:RBF神经网络的仿真结果与真实值匹配程度较好,具有更高的预测精度.  相似文献   

12.
线性回归分析与能源需求预测   总被引:7,自引:0,他引:7  
结合实例介绍了回归模型方法在能源预测中的应用,具体地讨论了最简单、最基本的直线回归模型结构及参数估计方法,对于其他一些曲线回归模型则可通过变量代换转化为直线回归模型。  相似文献   

13.
多重共线性问题的神经网络实例分析   总被引:5,自引:0,他引:5  
通过对多重共线性问题的回归分析,引出了在MATLAB中能快速设计的神经网络-推广的回归神经网络(GRNN),并用具体实例说明了实现GRNN的方法。  相似文献   

14.
针对目前局部回归神经网络动态BP算法的误差导数计算复杂、收敛速度慢的缺陷,提出了一种新的快速算法、该算法是将信号流图引入动态BP算法,较好地解决了求导数的复杂性,同时采用BFGS算法另快了网络的收敛速度仿真结果表明了本算法的有效性。  相似文献   

15.
通过将SIMS轧制力计算公式进行相应简约化处理,避免了模型软件在该公式计算时的重复迭代求解,缩短了计算时间,因此更适合在线软件计算.利用现场实际生产数据反向回归出变形抗力模型中的系数,提高了模型中系数的准确性.用神经网络对变形抗力与应力状态系数的乘积加以修正,进一步提高了轧制力预报的精度.预测结果与实测数据比较表明,轧制力预报误差基本在±5%以内,满足了轧制力预报的精度要求.  相似文献   

16.
针对目前局部回归神经网络误差函数在线计算复杂的缺陷,利用信号流图(SFG)基本理论,通过分析信号流图(SFG)和转置信号流图(ASFG),将神经网络的误差导数的信号流图(SFG)和转置信号流图(ASFG)分别级联在原始信号流图(SFG)和转置信号流图(ASFG)上,构成单输出自回归神经网络.依据因果非线性时变系统流图计算仅仅与网络拓扑结构有关的理论,推导了一种与网络结构无关的在线后向BP学习算法,较好地解决了对任意结构的局部回归神经网络的在线学习问题.仿真结果表明了本算法的有效性.  相似文献   

17.
前馈神经元网络已经被广泛应用到很多领域,但是,神经元网络欠缺更快的学习算法,传统的学习算法远远满足不了需求,因此介绍一种单隐层前馈神经网络(SLFNs)学习算法,即极限学习机——ELM.与BP算法相比,ELM神经网络学习算法具有更快的学习速度和更好的泛化性能.根据成批学习思想,给出在线学习算法OS—ELM.最后,用Matlab软件分别对BP算法和OS—ELM算法在导盘转速的建模中进行仿真,并给出仿真结果.  相似文献   

18.
为提高径向基(RBF)神经网络预测模型对交通流预测的准确性,提出了一种基于遗传算法优化径向基神经网络的交通流预测方法。利用遗传算法优化径向基神经网络的权值和阈值,然后训练RBF神经网络预测模型以求得最优解,并将该预测方法与RBF神经网络和BP神经网络的预测结果进行对比。仿真结果表明,该方法对交通流具有较好的非线性拟合能力,预测精度高于径向基神经网络和BP神经网络。  相似文献   

19.
基于RBF神经网络的软基沉降预测研究   总被引:2,自引:0,他引:2  
将神经网络理论引入软基沉降预测领域.借助自控领域信号处理的思想,应用改进后的径向基函数神经网络的映射模式进行软基沉降的短期预测;软基沉降的长期预测实质上为基于神经网络的多维欧氏空间的曲面拟合问题,将地基压缩层从上到下分成若干段,每段的土性指标按段内各层土在段中的长度取加权平均作为系统的输入,将某个沉降模型的沉降曲线参数作为系统的输出,可以预测后期沉降曲线走势.实践表明,建立的基于RBF神经网络的软基沉降短期预测和长期预测模型是可行的,只要有足够多的训练样本,长期预测可以达到比较精确的预测效果.表5,参9.  相似文献   

20.
针对经典光伏发电功率物理模型预测精度不高、可能遗漏关键气象因子的问题,基于数据驱动思想提出一种主成分分析、逐步线性回归以及多种检验相结合的光伏发电功率预测模型混合建模方法.采用相关性分析提取关键气象因子自变量,通过逐步线性回归对历史样本数据进行训练得到初始模型;对初始模型进行拟合程度、有效性以及多重共线性等多种检验,根据检验结果,采用主成分分析对初始模型自变量进行降维重构,得到修正模型;通过残差分析实现修正模型正确性的自校验;基于多种时间尺度对经典模型、未修正模型以及修正模型的预测结果进行详细对比分析.仿真结果表明修正模型提高了预测精度及所提混合建模方法的有效性与优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号