首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of crustal quartz in controlling Cordilleran deformation   总被引:1,自引:0,他引:1  
Lowry AR  Pérez-Gussinyé M 《Nature》2011,471(7338):353-357
Large-scale deformation of continents remains poorly understood more than 40 years after the plate tectonic revolution. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend (somewhat nebulously) on rock type, temperature and whether or not unbound water is present. Hence, it is unclear precisely how Earth material properties translate to continental deformation zones ranging from tens to thousands of kilometres in width, why deforming zones are sometimes interspersed with non-deforming blocks and why large earthquakes occasionally rupture in otherwise stable continental interiors. An important clue comes from observations that mountain belts and rift zones cyclically form at the same locations despite separation across vast gulfs of time (dubbed the Wilson tectonic cycle), accompanied by inversion of extensional basins and reactivation of faults and other structures formed in previous deformation events. Here we show that the abundance of crustal quartz, the weakest mineral in continental rocks, may strongly condition continental temperature and deformation. We use EarthScope seismic receiver functions, gravity and surface heat flow measurements to estimate thickness and seismic velocity ratio, v(P)/v(S), of continental crust in the western United States. The ratio v(P)/v(S) is relatively insensitive to temperature but very sensitive to quartz abundance. Our results demonstrate a surprising correlation of low crustal v(P)/v(S) with both higher lithospheric temperature and deformation of the Cordillera, the mountainous region of the western United States. The most plausible explanation for the relationship to temperature is a robust dynamical feedback, in which ductile strain first localizes in relatively weak, quartz-rich crust, and then initiates processes that promote advective warming, hydration and further weakening. The feedback mechanism proposed here would not only explain stationarity and spatial distributions of deformation, but also lend insight into the timing and distribution of thermal uplift and observations of deep-derived fluids in springs.  相似文献   

2.
Anisotropy of thermal diffusivity in the upper mantle.   总被引:4,自引:0,他引:4  
A Tommasi  B Gibert  U Seipold  D Mainprice 《Nature》2001,411(6839):783-786
Heat transfer in the mantle is a key process controlling the Earth's dynamics. Upper-mantle mineral phases, especially olivine, have been shown to display highly anisotropic thermal diffusivity at ambient conditions, and seismic anisotropy data show that preferred orientations of olivine induced by deformation are coherent at large scales (>50 km) in the upper mantle. Thus heat transport in the upper mantle should be anisotropic. But the thermal anisotropy of mantle minerals at high temperature and its relationship with deformation have not been well constrained. Here we present petrophysical modelling and laboratory measurements of thermal diffusivity in deformed mantle rocks between temperatures of 290 and 1,250 K that demonstrate that deformation may induce a significant anisotropy of thermal diffusivity in the uppermost mantle. We found that heat transport parallel to the flow direction is up to 30 per cent faster than that normal to the flow plane. Such a strain-induced thermal anisotropy implies that the upper-mantle temperature distribution, rheology and, consequently, its dynamics, will depend on deformation history. In oceans, resistive drag flow would result in lower vertical diffusivities in both the lithosphere and asthenosphere and hence in less effective heat transfer from the convective mantle. In continents, olivine orientations frozen in the lithosphere may induce anisotropic heating above mantle plumes, favouring the reactivation of pre-existing structures.  相似文献   

3.
热电阻的动态响应特性   总被引:2,自引:0,他引:2  
热电阻是最普遍使用的测温元件之一,工程中一般给出热电阻测量的滞后时间,而对测量的过渡过程缺乏深入的分析。以WZP1500型、WZP120型和有导热油的WZP120型Pt100热电阻为例,研究了它们的过渡过程。通过对实验数据的分析综合、参数辨识,得到了它们的阶跃时间响应函数和传递函数。同时,对影响热电阻数学模型结构的因素、影响数学模型参数大小的因素进行了分析,得到的结论可用于新热电阻数学模型的建立。  相似文献   

4.
Evidence of power-law flow in the Mojave desert mantle   总被引:2,自引:0,他引:2  
Freed AM  Bürgmann R 《Nature》2004,430(6999):548-551
Studies of the Earth's response to large earthquakes can be viewed as large rock deformation experiments in which sudden stress changes induce viscous flow in the lower crust and upper mantle that lead to observable postseismic surface deformation. Laboratory experiments suggest that viscous flow of deforming hot lithospheric rocks is characterized by a power law in which strain rate is proportional to stress raised to a power, n (refs 2, 3). Most geodynamic models of flow in the lower crust and upper mantle, however, resort to newtonian (linear) stress-strain rate relations. Here we show that a power-law model of viscous flow in the mantle with n = 3.5 successfully explains the spatial and temporal evolution of transient surface deformation following the 1992 Landers and 1999 Hector Mine earthquakes in southern California. A power-law rheology implies that viscosity varies spatially with stress causing localization of strain, and varies temporally as stress evolves, rendering newtonian models untenable. Our findings are consistent with laboratory-derived flow law parameters for hot and wet olivine--the most abundant mineral in the upper mantle--and support the contention that, at least beneath the Mojave desert, the upper mantle is weaker than the lower crust.  相似文献   

5.
Normal faulting in central Tibet since at least 13.5 Myr ago   总被引:16,自引:0,他引:16  
Tectonic models for the evolution of the Tibetan plateau interpret observed east-west thinning of the upper crust to be the result of either increased potential energy of elevated crust or geodynamic processes that may be unrelated to plateau formation. A key piece of information needed to evaluate these models is the timing of deformation within the plateau. The onset of normal faulting has been estimated to have commenced in southern Tibet between about 14 Myr ago and about 8 Myr ago and, in central Tibet, about 4 Myr ago. Here, however, we report a minimum age of approximately 13.5 Myr for the onset of graben formation in central Tibet, based on mineralization ages determined with Rb-Sr and 40Ar-39Ar data that post-date a major graben-bounding normal fault. These data, along with evidence for prolonged activity of normal faulting in this and other Tibetan grabens, support models that relate normal faulting to processes occurring beneath the plateau. Thinning of the upper crust is most plausibly the result of potential-energy increases resulting from spatially and temporally heterogeneous changes in thermal structure and density distribution within the crust and upper mantle beneath Tibet. This is supported by recent geophysical and geological data, which indicate that spatial heterogeneity exists in both the Tibetan crust and lithospheric mantle.  相似文献   

6.
The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.  相似文献   

7.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

8.
本文基于“流动近似理论”,用差分法综合求解金属塑性变形粘性流动的力平衡方程、质量守恒及热平衡方程,从而得出轧制过程中金属各点不均匀变形、各点温度分佈的数值解预报模型。由于差分法计算时间大大小于有限元法的计算时间,因此提供了求解在线控制模型的可能性。  相似文献   

9.
A detailed 3-D P-wave velocity model of the crust and uppermost mantle under the capitol region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48750 precise P-wave arrival time data from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by 123 seismic stations. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new information on the geological structure and complex seismotectonics of this region. Different patterns of velocity structures show up in the North China Basin, the Taihangshan and the Yanshan Mountainous areas. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts, respectively, which are oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major structure and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity anomalies. Most of large earthquakes, such as the 1976 Tangshan earthquake (M 7.8) and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-velocity areas in the upper to middle crust. However, in the lower crust to the uppermost mantle under the source zones of the large earthquakes, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids, just like the 1995 Kobe earthquake (M 7.2) and the 2001 Indian Bhuj earthquake (M 7.8). The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

10.
The basic granulite, which is considered to be the MORE based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of Burma and west Yunnan, east of Myitkyina suture in the eastern Burma. The laser micro-area 40Ar-39Ar technique is used to date the age of garnet and cliopyroxene that is the result of the early metamorphic event. The isochron outcome is -74.4 Ma which is induced to be the age of the suduction event of the Myitkyina oceanic crust on the basis of the Cenozoic lithosphere tectonic evolution, tectonic thermal events and the age of deformation and metamorphism. The discovery of the high-grade or high-pressure metamophic rocks in the island-arc magmatic suite by the way of studying its P-T-t paths can provide a good way to study the age and process of oceanic crust subduction, slab break-off, metamorphic terrain exhumation and the evolution of paleoocean basin.  相似文献   

11.
四川盆地北部热史波动模型的建立和应用   总被引:3,自引:0,他引:3  
基于四川盆地北部沉积波动的特点,结合该区的实际地质特征,在该区初步建立了热史波动模型,并应用该模型结合镜质体反射率古温标对四川盆地的大地热流史演化进行恢复,同时利用磷灰石裂变径迹数据对模拟结果进行检验.模拟实验结果表明:志留纪至二叠纪大地热流值波动上升,波动幅度不大,热流值总体相对较低(50 mW/m2),此阶段热流值的波动主要是在海西构造运动作用下,地壳抬升或下降造成的;二叠纪至早侏罗世,是本区热流值最高阶段,最高可达56mW/m2,并且持续时间达到35 Ma,之后降低;此后大地热流值随时间波动上升.从热史波动曲线可以看出,这些波动主要是各期构造运动作用造成地层的抬升剥蚀而形成的.波动热史模型模拟的结果为该区成藏演化史研究奠定了基础.  相似文献   

12.
勘探发现渤海湾盆地惠民凹陷存在与火成岩席有关的油气藏.基于两种不同的热传导模型,数值模拟了该凹陷内一个孤立的辉绿岩席以及围岩的热演化,定量分析了岩席对下伏围岩的热影响.模拟结果表明:围岩孔隙水的汽化作用是影响岩浆-围岩热传输的重要因素,在孔隙水汽化的情况下,围岩经历的峰值温度比简单热传导模型低100℃左右;在热接触变质形成的角岩带内出现镜质体反射率的异常低值,无法通过常用公式计算围岩经历的峰值温度,但依据爆炸古温度方法得到的结果与热传输模拟结果一致,反映了该区域曾经历了高温(大于450℃)和高压环境.  相似文献   

13.
以澳大利亚Gunnedah盆地Bellata-1井作为实例,采用3种主要的热传导模型,数值模拟了火成侵入岩席对相邻烃源岩的热影响.结果表明:(1)假设岩浆瞬间侵入且考虑地层孔隙水气化的复杂热传导模型估计的围岩的接触温度最高,假设岩浆瞬间侵入但忽略地层孔隙水气化的简单热传导模型次之,而假设岩浆缓慢侵入的简单热传导模型的估计值最低.(2)岩浆瞬间侵入的简单热传导模型预测的岩席对围岩的热影响范围最高,缓慢侵入的热传导模型最低,岩浆的缓慢侵入方式在降低侵入体对相邻围岩的热影响方面,可以比孔隙水的气化作用更为显著.(3)岩浆瞬间侵入的简单热传导模型的计算结果与镜质体反射率温标最为吻合,说明岩浆为瞬间侵入且孔隙水的气化及流动在低渗透率且超高压的地层内受到了限制.  相似文献   

14.
在地热特别是中深层地热长期采灌作业中,常常存在储层结构变化,甚至诱发地表变形破坏等安全问题。在地热开发的多个阶段需要开展开采安全性分析与评价研究。这些过程是典型的多场耦合过程,迫切需要多场耦合模型及数值模拟技术。本文介绍两个专用多场耦合评价工具,即水岩反应引起热储结构破坏的THC模拟器和采热诱发地面变形的THM模拟器,分析了两个模型的数学原理及其开发过程,并给出应用案例。  相似文献   

15.
Zircon LA-ICP-MS U-Pb ages and Hf isotopic as well as whole-rock geochemical data are reported for keratophyes in the Pingshui Group, Zhejiang. The results are used to discuss their petrogenesis and geological significance. The keratophyes were dated at 904±8 to 906±10 Ma. These intermediate-felsic rocks are characterized by high LREE contents and depletion of HREE and HFSE (e.g., Nb, Ta, Ti, P), resembling arc-derived rocks. The keratophyes exhibit positive εHf(t) values of 8.6 to 15.4, consistent with the...  相似文献   

16.
Copley A  Avouac JP  Wernicke BP 《Nature》2011,472(7341):79-81
How surface deformation within mountain ranges relates to tectonic processes at depth is not well understood. The upper crust of the Tibetan Plateau is generally thought to be poorly coupled to the underthrusting Indian crust because of an intervening low-viscosity channel. Here, however, we show that the contrast in tectonic regime between primarily strike-slip faulting in northern Tibet and dominantly normal faulting in southern Tibet requires mechanical coupling between the upper crust of southern Tibet and the underthrusting Indian crust. Such coupling is inconsistent with the presence of active 'channel flow' beneath southern Tibet, and suggests that the Indian crust retains its strength as it underthrusts the plateau. These results shed new light on the debates regarding the mechanical properties of the continental lithosphere, and the deformation of Tibet.  相似文献   

17.
为了提高钢管张力减径过程的轧制质量、降低能耗以及控制终轧温度的准确性,从而为钢管出炉温度提供科学设定依据,通过对传热机理分析,建立了钢管张力减径过程传热模型,给出了除鳞、轧制及空冷阶段钢管边界热流的计算式.基于塑性材料的变分原理,建立了轧制变形区的变形热计算模型.结果表明:变形热对钢管温度分布影响不可忽略;该模型能真实反映钢管在张力减径过程中的温度变化,与实测结果吻合较好,可用于钢管再加热和张力减径过程中的参数分析及工艺优化.  相似文献   

18.
在三维热导方程波数域方法(MWN3D)的基础上发展了一种反演岩石层3D热结构的方法.该方法的核心是在使用表面热流数据的同时,假设热生成率在深度方向上为幂指数衰减规律,再通过调节地表等效热生成率的方式,满足地表温度基本上为一常数的强限定条件,最后得到岩石层3D热结构模型以及相应的地表等效热生成率分布.数值模型实验表明这一方法计算速度快,处理问题灵活.在观测数据和测量参数(特别是热生成率)不充分的条件下,该方法不失为一种可行的估计区域岩石层的3D热结构的途径.  相似文献   

19.
Keller CB  Schoene B 《Nature》2012,485(7399):490-493
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5?Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.  相似文献   

20.
Zircon U-Pb dating indicates that the fuchsite quartzite in eastern Hebei Province was derived from weathering and erosion of the 3.6-3.8 Ga granitic rocks. In-situ zircon Hf analyses show that the Lu-Hf isotopic system remained closed during later thermal disturbances. Zircons with concordant ages have Hf isotopic model ages of about 3.8 Ga, suggesting a recycling of this ancient crust. The -3.8 Ga zircons have similar Hf isotopic compositions to those of chondrite, indicating that their source rocks (granitic rocks) were derived from partial melting of the juvenile crust which originated from a mantle without significant crust-mantle differentiation. Therefore, it is proposed that there was no large-scale crustal growth before -3.8 Ga in eastern Hebei Province. Considering zircon Hf isotopic data from other areas, it is concluded that the most ancient crust in the North China Craton probably formed at about 4.0 Ga, and the possibility to find crust older than 4.0 Ga is very limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号