首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
该文结合大型电机组运行工况实际,以通信技术、网络技术和检测技术为基础,采用微型计算机作为主机,利用PLC作为从机,发挥其强大运算和逻辑功能,通过完善的软件与硬件相结合,构成风力发电机组的状态监测系统。  相似文献   

2.
针对LSSVM算法参数优化选取的问题,提出一种结合人工鱼群(AFSA)和粒子群优化(PSO)的混合智能算法,优化LSSVM的参数,利用AFSA算法进行全局寻优搜索参数初值,PSO算法局部更新最优解、加速跳出局部最优。最后通过对风电机组齿轮箱振动加速度数据进行模拟实验,建立了PSO-LSSVM、AFSA-LSSVM和AFSA-PSO-LSSVM算法模型。实验结果表明,AFSA-PSO-LSSVM相较于PSO-LSSVM和AFSA-LSSVM模型,收敛速度更快、精度更高,验证了方法的有效性。  相似文献   

3.
针对现有风电机组监测系统无法对其传动系统早期故障进行有效诊断的问题,研发了一套基于B/S和C/S混合架构的风电机组传动系统网络化状态监测与故障诊断系统。根据应用需求设计了风电机组传动系统状态监测和故障诊断系统、整体框架和功能模块;结合数据采集设备,基于.ENT和SQL Server平台研发了风电机组传动系统状态监测和故障诊断系统,包括网络化数据采集、远程状态监测、信号分析、故障诊断和数据库服务器等模块。该系统成功应用于某风场风电机组传动系统状态监测和故障诊断。  相似文献   

4.
5.
提出了一种基于广义回归神经网络(GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用SCADA系统的真实历史数据,采用广义回归神经网络(GRNN)建立了风电机组的性能预测模型,通过比较模型的预测精度对GRNN的平滑因子进行了优选。以此模型为基础,采用滑动数据窗方法实时计算风电机组转速和功率的残差评价指标,当评价指标连续超过预先设定的阈值时,则可判断风电机组状态异常。采用某实际风电机组若干历史故障发生前后的真实SCADA数据进行模拟,验证了方法的有效性。  相似文献   

6.
为提高风电机组变桨系统运行状态监测与诊断的准确性,提出基于失效模式与影响分析和双向长短期记忆网络的监测与诊断方法.用失效模式与影响分析方法分析变桨系统运行状态的特征信号,以此作为训练模型的输入量,运行状态作为输出量,建立循环神经网络模型、长短期记忆网络模型以及双向长短期记忆网络模型,采用某风电场数据采集与监视控制系统数...  相似文献   

7.
针对风电传动系统齿轮箱的故障诊断问题,在脉冲激励响应的基础上提出了一种频率诱导变分模态分解(FIVMD)方法,并将其应用于齿轮箱故障特征提取.首先,根据振动信号傅里叶谱的极大值分布估计齿轮箱系统的自振频率;然后,将固有频率的估计值作为各模态分量中心频率的初始化位置,并通过交替乘子法将原始信号自适应分解为本征模态函数;其次,通过希尔伯特变换对各本征模态函数求包络谱,并计算其故障特征频率比;最后,挑选出故障特征频率比最大的模态分量,并根据其包络谱特征实现齿轮箱故障的有效识别.以维斯塔斯某3 MW风电机组圆柱齿轮断齿故障为例,验证了FIVMD在工程应用中的有效性和优越性.  相似文献   

8.
风电机组状态识别对于风电机组安全可靠经济运行具有重要现实意义.从风电机组能量转换分析出发,提出和分析了4种基于风速与输出功率关系的风电机组运行状态健康指标的物理力学内涵和计算方法;然后,以2 MW风电机组SCADA数据为基础,对比分析4种健康指标的识别性能,结果表明:基于欧式距离的风电机组运行状态健康指标的识别性能最佳.这为风电机组实时在线运行状态识别提供了一种新途径.  相似文献   

9.
徐成刚 《科技信息》2013,(19):174-176
非线性系统存在建模误差时,UKF的状态估计误差较大,为了提高UKF对非线性系统的状态估计能力,本文将非线性预测滤波(NPF)方法和UKF相结合,提出了一种改进的UKF。首先应用NPF求得模型误差值,得到非线性系统的修正模型,将模型离散化再应用UKF进行状态估计。在仿真实验中分别应用单纯的UKF和改进后的UKF对一个存在模型误差的非线性系统进行状态估计,对它们的估计结果进行了比较和分析,结果表明结合NPF的UKF能够提高非线性系统状态估计的精度。  相似文献   

10.
针对风电齿轮箱轴承故障问题,提出一种基于信息融合将BP神经网络与D-S证据理论相结合的风电轴承故障诊断方法。首先基于大数据,挖掘SCADA(supervisory control and data acquisition)系统中与风电齿轮箱轴承故障有关的振动、温度、电流、转矩和转速信号等故障特征;然后将各信号故障特征量作为神经网络输入,将神经网络的输出归一化作为证据理论基本概率分配值(BPA值),为解决各证据之间冲突问题,采用一种基于加权的方法来改进各条证据,以减小冲突;最后利用组合规则将各条改进的证据融合,得出最终诊断结果。研究基于某风场2 MW风电机组的实际运行数据,结果表明:随着融合信号维度的增加,最终诊断结果的准确率也逐步提高,融合多维信号的可靠性明显高于单一信号。  相似文献   

11.
为预防风机齿轮箱严重故障的发生,提出了一种结合正态云模型和趋势状态分析法的齿轮箱状态评估模型.首先,基于数据采集与监控(SCADA)系统的历史数据,采用支持向量机方法建立齿轮箱运行温度预测模型,对齿轮箱不同状态下的趋势预测特征进行分析,求取正常和异常状态时预测值的相对误差序列.然后,采用改进无确定度逆向正态云发生器,利用所求取的相对误差序列提取正常云和异常云的数字特征,构建齿轮箱状态评估云模型.该模型能够根据风机SCADA系统的实测数据,求取齿轮箱当前状态对正常云和异常云的贴近度,并采用最大贴近度原则确定齿轮箱状态.最后,利用辽宁某风机齿轮箱的实测数据对所提模型进行验证.结果表明:该模型能够对齿轮箱的早期缺陷及时预警,达到实时监测的目的.  相似文献   

12.
将小波降噪和经验模态分解相结合,提出一种风电机组齿轮箱故障诊断的方法。先对齿轮故障振动信号进行小波降噪预处理,再进行经验模态分解,对包含故障特征的固有模态函数用Hilbert变换得到包络谱,通过对包络信号做功率谱分析,提取故障特征频率,与未降噪信号处理的结果进行比较,降噪后诊断效果明显。  相似文献   

13.
风电齿轮箱传动系统的动力学建模   总被引:1,自引:0,他引:1  
由于风速的随机性特点,使得风电齿轮箱长期处于较为复杂的变载荷作用下而产生振动,这些振动将会引起齿轮箱内部结构的损坏.为了更好地对齿轮箱进行动力学分析,将风电齿轮箱传动系统分解为三级齿轮传动,采用集中质量法,在直齿轮、斜齿轮和行星齿轮动力学模型的基础上,建立了整个齿轮箱传动系统的动力学模型;并在考虑齿轮啮合刚度、啮合阻尼、啮合误差、偏心量、弯扭耦合、自身重力以及支撑轴承等因素的共同作用下,利用拉格朗日方程推导了整个传动系统的动力学方程.为今后分析兆瓦级风电齿轮箱传动系统的固有特性、动态响应等动力学特性奠定了一定的基础.  相似文献   

14.
针对单一高斯过程在化工过程软测量建模中存在估计精度不高的问题,利用Bagging和高斯过程回归算法,提出一种基于Bagging算法的集成高斯过程软测量建模方法.该算法使用Bagging技术从训练样本集中选取若干子训练样本集,利用该若干子集形成多个高斯过程模型,并通过加权组合方式进行集成,得到最终的模型输出.将该方法应用...  相似文献   

15.
Based on the zero-failure data of 30 Chinese 1. 5 MW wind turbine gearboxes( WTGs),the optimal confidence limit method was developed to predict the reliability and reliability lifetime of WTG. Firstly,Bayesian method and classical probability estimation method were introduced to estimate the value interval of shape parameter considering the engineering practice. Secondly,taking this value interval into the optimal confidence limit method,the reliability and reliability lifetime of WTG could be obtained under different confidence levels. Finally,the results of optimal confidence limit method and Bayesian method were compared. And the comparison results show that the rationality of this estimated range.Meantime, the rule of confidence level selection in the optimal confidence limit method is provided, and the reliability and reliability lifetime prediction of WTG can be acquired.  相似文献   

16.
本文在分析了现有测风系统不足的基础上,通过风洞实验验证了不同入射角来流风速对风速仪测风的影响,证明了现有风速测量的不准确性。在此基础上提出了激光雷达风轮前方测风系统,根据电量损失的百分比和偏航误差的余弦平方关系曲线,通过在风电场安装激光雷达,收集激光雷达和现有测风系统(机舱后方气象架和测风塔)的风况数据,对数据进行相关性及拟合分析,得出现有测风系统所测量风向的偏差值。通过在人机界面(HMI)中修正此偏差值可以减少功率损失。  相似文献   

17.
针对短期风电功率预测关键气象因素影响程度的差异和单一模型预测精度不足的问题,提出一种基于近邻成分分析(neighborhood components analysis, NCA)特征加权和Stacking集成预测的短期风电功率预测模型。考虑气象特征对风电功率影响程度不同,利用NCA对气象特征进行加权,将加权特征作为模型输入,强化关键特征的影响程度;在此基础上,构建多个基预测器预测风电功率,并利用结合器将预测结果融合,建立Stacking集成预测模型。算例分析表明,以加权特征作为输入的Stacking集成预测模型具有更高的短期风电功率预测精度。  相似文献   

18.
风能作为重要的可再生能源,近几十年来,全球风能使用规模迅速增长,陆上和海上风力发电机组发电容量不断增加。由于风力发电机组故障维修成本巨大,因此必须开发有效且可靠的风力发电机组故障预警方法,在风电机组发生故障前进行提前预警,以便降低风电场的运营和维护成本。目前风电机组数据采集与监视控制系统(supervisory control and data acquisition, SCADA)已经在风电场有了广泛的应用,其中蕴含着大量的潜在数据信息,同时深度学习方法在海量数据挖掘方面有比较明显的优势,因此深度学习方法在风力发电机组故障预警领域的应用潜力巨大。综述了近年来相关深度学习方法在风力发电机组故障预警的研究进展,总结了风电机组故障预警的大体步骤,分析了各个步骤的具体处理方法,对每种技术方法的特点进行整理分析。最后阐述了深度学习在风电机组故障预警领域所面临的挑战,并对今后的研究重点进行了展望。  相似文献   

19.
根据空气动力学理论分析风力机特性,探讨最大风能追踪和捕获的方法,通过对永磁同步电机模型的研究,利用直接转矩控制理论实现风力机特性的模拟,利用MATLAB/SIMULINK搭建永磁同步电机的风力机模拟系统的仿真模型,通过对风力机特性和最大风能捕获的仿真,证明了系统的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号