首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

2.
A rice psl1 (presenescing leaf) mutant was obtained from a japonica variety Zhonghua 11 via radiation of 60Co-γ in M2 generation. Every leaf of the mutant began to wither after it reached the big-gest length,while the leaves of the wild variety could keep green for 25―35 d. In this study,genetic analysis and gene mapping were carried out for the mutant identified. The SSR marker analysis showed that the mutant was controlled by a single recessive gene (psl1) located on chromosome 2. Fine mapping of the psl1 locus was conducted with 34 new STS markers developed around psl1 anchored region based on the sequence diversity between Nippon-bare and 93-11. The psl1 was further mapped be-tween two STS markers,STS2-19 and STS2-26,with genetic distances of 0.43 and 0.11 cM,respectively,while cosegregated with STS2-25. A BAC contig was found to span the psl1 locus,the region being delim-ited to 48 kb. This result was very useful for cloning of the psl1 gene.  相似文献   

3.
A rice psl1 (presenescing leaf) mutant was obtained from a japonica variety Zhonghua 11 via radiation of ^60Co-γ in M2 generation. Every leaf of the mutant began to wither after it reached the biggest length, while the leaves of the wild variety could keep green for 25--35 d. In this study, genetic analysis and gene mapping were carried out for the mutant identified. The SSR marker analysis showed that the mutant was controlled by a single recessive gene (psl1) located on chromosome 2. Fine mapping of the psl1 locus was conducted with 34 new STS markers developed around psl1 anchored region based on the sequence diversity between Nipponbare and 93-11. The psl1 was further mapped between two STS markers, STS2-19 and STS2-26, with genetic distances of 0.43 and 0.11 cM, respectively, while cosegregated with STS2-25. A BAC contig was found to span the psl1 locus, the region being delimited to 48 kb. This result was very useful for cloning of the psl1 gene.  相似文献   

4.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating crop diseases worldwide. The avirulence gene corresponding to rice blast resistance gene Pi7 in field isolate CHL346 was inherited as a single gene, designated AvrPi7, in a segregating population consisting of 189 ascospore progenies derived from a cross between field isolates CHL346 and CHL42. In order to determine the chromosomal location of the AvrPi7 locus, a total of 121 simple sequence repeat (SSR) markers were developed based on the whole-genome sequence of reference isolate 70-15 of M. oryzae. Linkage analysis of the locus with these SSR markers showed that eight SSR markers on chromosome 1 were linked to the locus, among which the closest flanking markers MS1-9 and MS1-15 were 3.2 and 16.4 cM from the locus, respectively. For fine mapping, additional PCR-based makers including eight SSR markers and three candidate avirulence gene (CAG) markers were developed in the region flanking both markers. The AvrPi7 locus was genetically delimited within a 1.6-cM region flanked by markers MS1-21 and MS1-22, and co-segregated with the marker CAG2. To construct a physical map of the AvrPi7 locus, molecular markers linked to the Avr gene were mapped on the supercontigs of the ref-erence isolate 70-15 through bioinformation analysis (BIA). Consequently, the AvrPi7 locus was delim-ited to a 75-kb interval flanked by markers MS1-21 and MS1-22 based on the reference sequence. Merodiploids observed in this study are also discussed.  相似文献   

5.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

6.
Pms1, a locus for photoperiod sensitive genic male sterility in rice, was identified and mapped to chromosome 7 in previous studies. Here we report an effort to identify the candidate genes for Pms1 by comparative sequencing of BAC clones from two cultivars Minghui 63 and Nongken 58, the parents for the initial mapping population. Annotation and comparison of the sequences of the two clones resulted in a total of five potential candidates which should be functionally tested. We also conducted com-parative analysis of sequences of these two cultivars with two other cultivars, Nipponbare and 93-11, for which sequence data were available in public databases. The analysis revealed large differences in sequence composition among the four genotypes in the Pms1 region primarily due to retroelement activity leading to rapid recent growth and divergence of the genomes. High levels of polymorphism in the forms of indels and SNPs were found both in intra- and inter-subspecific comparisons. Dating analysis using LTRs of the retroelements in this region showed that the substitution rate of LTRs was much higher than reported in the literature. The results provided strong evidence for rapid genomic evolution of this region as a consequence of natural and artificial selection.  相似文献   

7.
8.
The rice clustered spikelets (Cl) mutant exhibits a phenotype that most of branch apical have 2-3 spikelets clustered together,SEM (scanning electron microscope )observation suggested that the Cl gene controlled branch apical development,and influenced the terminal spikelets elongation,The spikelet number was reduced in mutant,indicating that Cl may also have an effect on spikelet number,To map Cl locus,two F2 mapping populations derived from the crosses between the Cl and ZhongHua11,and Cl and ZheFu802 were constructed ,respectively,The Cl locus was roughly mapped between two CAPS markers CK0214 and SS0324,A further fine mapping analysis showed that the Cl locus was mapped between makers R0674E and Cl12560,with genetic distances of 0.2 and 2.1 cM,respectively ,Then we found a PAC conting spanning Cl locus,the region was delimited to 196 kb.This results was useful for cloning of the Cl gene,Allelism test demonstrated that Cl was allelic to Cl2 another rice clustered spikelets mutant.  相似文献   

9.
The pubescence of the leaf blade surface is an important agronomic characteristic for rice morphology and significantly influences rice growth as well as physiological characteristics. This characteristic was analyzed in F1 and F2 plants derived by crossing cultivar 75-1-127 with the indica cultivar Minghui 63, as well as the glabrous cultivar Lemont and indica cultivar 9311. Results indicated that the pubescence of the leaf blade surface was a dominant trait and controlled by a single gene. The GL6 gene was primarily mapped on rice chromosome 6 with recessive F2 population derived from 75-1-127/Minghui 63 by combining bulked segregation analysis and recessive class analysis using the Mapmaker3.0/MapDraw software. The genetic distances between the simple sequence repeat markers RM20491 and RM20547 were 7.2 and 2.2 cM, respectively. The GL6 gene was fine mapped in the interval between InDel-106 and InDel-115 at genetic distances of 0.3 and 0.1 cM, respectively. The large, recessive F2 population was derived from 75-1-127/Minghui 63. A high-resolution genetic and physical map of GL6 was constructed. Derived from the map-based sequences published by the International Rice Genome Sequencing Project, the GL6 gene was localized at an interval of 79 (japonica) and 116.82 kb (9311) bracketed by InDel-106 and InDel-115 within the BAC accession numbers AP008403 and AP005760. Seven annotated genes (japonica) and eight annotated genes (9311) were present. The basis was further set for GL6 cloning and function analysis.  相似文献   

10.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

11.
The exploration of new genes controlling rice leaf shape is an important foundation for rice functional genomics and plant archi-tecture improvement. In the present study, we identified a rolling leaf mutant from indica variety Yuefeng B, named rl11(t), which exhibited reduced plant height, rolling and narrow leaves. Leaves in rl11(t) mutant showed abnormal number and morphology of veins compared with those in wild type plants. In addition, rl11(t) mutant was less sensitive to the inhibitory effect of auxin than the wild type. Genetic analysis suggested that the mutant was controlled by a single recessive gene. Gene Rl11(t) was initially mapped between SSR markers RM6089 and RM124 on chromosome 4. Thirty-two new STS markers around the Rl11(t) region were developed for fine mapping. A physical map encompassing the Rl11(t) locus was constructed and the target gene was finally delimited to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. This provides useful information for cloning of Rl11(t) gene.  相似文献   

12.
Silicon is essential for optimal growth of rice (Oryza sativa L.). This study was conducted to fine map qHUS6.1, a quantitative trait locus (QTL) for rice hull silicon content previously located in the interval RM510–RM19417 on the short arm of chromosome 6, and to analyze the effect of this QTL on the silicon content in different organs of rice. Selfed progenies of a residual heterozygous line of rice were detected using 13 microsatellite markers in the vicinity of qHUS6.1. Three plants with overlapping heterozygous segments were selected. Three sets of near isogenic lines (NILs) were developed from the selfed progenies of the 3 plants. They were grown in a paddy field and the silicon contents of the hull, flag leaf, and stem were measured at maturity. Based on analyses of the phenotypic distribution and variance among different genotypic groups in the same NIL set, a significant genotypic effect was shown in the NIL set that was heterogenous in the interval RM19410–RM5815, whereas a significant effect was not found in the remaining 2 NIL sets that were heterogenous in either of the intervals RM4923–RM19410 or RM19417–RM204. On comparison among the physical positions of the 3 heterogenous segments, qHUS6.1 was delimited to a 64.2-kb region flanked by RM19410 and RM19417 that contains nine annotated genes according to the genome sequence of Nipponbare. This QTL showed strong effects on all of the three traits tested, and the enhancing alleles were always derived from the paternal line Milyang 46. The present study will facilitate the cloning of qHUS6.1 and the exploration of new genetic resources for QTL fine mapping.  相似文献   

13.
Leaf senescence as an active process is essential for plant survival and reproduction. However, premature senility is harmful to agricultural production. In this study, a rice mutant, named as psl3 (presescing leaf 3) isolated from EMS-treated Jinhui 10, displays obvious premature senility features both in morphological and physiological level. Genetic analysis showed that mutant trait was controlled by a single dominant gene (PSL3), which was located on rice chromosome 7 between SSR marker c7sr1 and InDel marker ID10 with an interval of 53.5 kb. The result may be useful for the isolation of the PSL3 gene.  相似文献   

14.
Previously, we isolated a vernalization-related gene, VER2, from winter wheat (Triticum aestivum L.) and its expression was restricted in the immature leaves of vernalized wheat seedlings. To further investigate the regulation of VER2 expression and the function of its promoter, we isolated a 41.7 kb genomic clone containing VER2 gene from atransformation-competent artificial chromosome (TAC) library of wheat (Triticum aestivum-Haynaldia villosa). The sequence analysis showed that there were eleven predicted genes in the TAC. The exons of gene 3 corresponded to the cDNA sequence of VER2 gene. Analysis of VER2 promoter structure showed that there were three small repeat sequences divided by two large repeat sequences. The putative response elements, such as abscisic acid response elements (ABRE), MeJA-response elements (Me-JARE), low-temperature response elements (LTR), endosperm expression elements, MYB binding sites and similar elements to GA response elements (GARE), were involved in the VER2 promoter region. Construct containing the VER2 promoter (-5895 to 73) driving GFP reporter gene was bombarded into vernalized or non-verualized immature leaves in wheat. The vernalized immature leaves showed bright green fluorescence after incubation for 24 h, however, the green fluorescence was not observed in the non-vernalization leaves under the same condition. These results suggested that vernalization was essential for the function of VER2 promoter in the immature leaves of winter wheat.  相似文献   

15.
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.  相似文献   

16.
Strong heterosis existed in the hybrid of the subspe-cies in rice[1,2]. However, the partial sterility of the hy-brid hinders the utilization of the heterosis[3,4]. Ikehashi et al.[5,6] considered the female gamete as the main ste-rility form and proposed…  相似文献   

17.
Fine mapping of Helminthosporium turcicum resistance gene Ht2 is extremely valuable for map-based cloning of the Ht2 gene,gaining a better knowledge of the distribution of resistance genes in maize genome and marker-assisted selection in maize breeding.An F2 mapping population was developed from a cross between a resistant inbred line 77Ht2 and a susceptible inbred line Huobai.With the aid of RFLP marker analyses,the Ht2 gene was mapped between the RFLP markers UMC89 and BNL2.369on chromosome 8,with a genetic distance of 0.9cM to BNL2.369.There was a linkage between SSR markers UMC1202,BNLG1152,UMC1149 and the Ht2 gene by SSR assay,Among the SSR markers,the genetic distance between UMC1149 and the Ht2 gene was 7.2cM,By bulked segregant analysis 7 RAPD-amplified products which were probably linked to the Ht2 gene were selected after screening 450 RAPD primers and converted the single-copy ones into SCAR markers.Linkage analysis showed that the genetic distance between the SCAR marker SD-06633 and the Ht2 gene was 0.4cM.From these results,a part of linkage map around the Ht2 gene was constructed.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号