共查询到20条相似文献,搜索用时 10 毫秒
1.
我们试制出五种电池用铝合金,并测定了它们在不同pH值和添加缓蚀剂的高氯酸铝溶液中的阳极极化曲线和腐蚀速率。结果表明,Al-Zn-In-B、Al-In-Ga、Al-Zn-Cd-Mg合金是较好的电池阳极材料,电解液选用Al(C1O_4)_3400克/升、pH=2.7、添加TX-100.04克/升是较佳条件。 相似文献
2.
研究了NaCl溶液中Sn作为合金元素和Sn^4+作为溶液中添加离子对Al-Zn—In牺牲阳极电化学性能和溶解过程的影响,并通过扫描电镜和能谱分析考察了阳极溶解前后微观形貌的变化和表面的元素分布.结果显示:Sn明显增加了阳极表面富Zn和In沉积物的数量,使表面更加容易活化,表现出理想的牺牲阳极性能.特别是Sn^4+作为溶液中添加离子时活化效果最显著. 相似文献
3.
本文研究了混合溶剂碳酸丙烯酯(PC)/二氧六环的电化原行,以及对Li/FeS_2电池放电性能的影响,得到了一些有价的信息,为Li/FeS_2电池的进一开发应用提供了依据。 相似文献
4.
镁是地球上储量最丰富的轻金属元素之一,利用镁和空气中的氧分别作为负极和正极的活性反应物可构筑镁空气电池,抑制强活泼性的镁在放电过程中的自腐蚀是提高镁空气电池放电效率的主要手段.本工作研究电解质添加剂硅酸钠对空气电池中镁阳极腐蚀行为及放电性能的影响.动电位极化、电化学阻抗技术,结合浸泡腐蚀形貌观察、X线能谱分析的研究结果... 相似文献
5.
在前二篇报导中,我们曾研究了锌电极在氢氧化钾溶液中的自动溶解、阳极溶解和阳极钝化的规律。本文中我们研究锌在氢氧化锂溶液中的阳极行为。在研究锌酸盐碱溶液的陈化性质时发现,溶液中存在着少量的锂或硅化合物(Li~+,SiO_3~=)可使溶液的陈化过程大为减慢。他认为此时从陈化溶液中析出的是菱形的氢氧化锌(在中等碱浓度下),而在无添加物时析出的是氧化锌。随后又确定,在含锌 相似文献
6.
利用铝热反应熔化法制备YAG/Al2O3复相陶瓷材料,研究配料中Y2O3含量对复相陶瓷显微组织和力学性能的影响.结果表明:复相陶瓷的相组成为YAG和Al2O3,合有少量的Fe相.随着Y2O3含量的增大,Al2O3颗粒分布越均匀,复相陶瓷的维氏硬度先减小后增加,而相对密度是增加的,在x=0.90时达到最大值分别10.9 ... 相似文献
7.
纤维素在氢氧化钠/硫脲/尿素/水溶液中的溶解和溶液特性 总被引:4,自引:0,他引:4
使用氢氧化钠/硫脲/尿素/水溶液作为纤维素的复合溶剂,研究了纤维素在其中的溶解行为和溶液性质,发现该体系在-10℃条件下能快速溶解纤维素,其溶解是一个没有衍生物生成的直接过程,该纤维素溶液在过高温度下易凝胶化. 相似文献
8.
9.
用海藻酸钠(Sodium Alginate,SA)将肌红蛋白(Mb)固定在热裂解石墨电极表面,制备了Mb.SA膜修饰电极.包埋在SA膜中的Mb在磷酸盐缓冲溶液(PBS)和乙醇混合溶液中与电极直接传递电子,得到一对对称的Mb辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对的氧化还原峰,式电势为-0.339V(vs SCE).式电势随PBSpH值增加而负移且成线性关系,直线斜率为-47.0mV/pH,说明肌红蛋白的电子传递过程伴随有质子的转移.并研究了Mb-SA膜修饰电极在PBS和乙醇混合溶液中催化还原H2O2和催化六氯乙烷脱氯,该修饰电极可用于H2O2和六氯乙烷的定量检测. 相似文献
10.
铝及铝合金阳极氧化后的表面特征和胶接特性 总被引:1,自引:0,他引:1
姜凤 《辽宁师专学报(自然科学版)》2006,8(2):18-18,33
根据有关要求,铝合金经过各种机械(电)化学方法处理后具有表面形貌、表面粗糙程度及在自然环境中胶接的稳定性等表面特性.对铝材进行表面处理后,其胶接性能得到改善,其中以磷酸阳极化处理的效果最好.同时,通过胶接方法使铝及铝合金在各行各业应用中达到更耐腐蚀、更美观的特性. 相似文献
11.
纤维素在ZnCl_2水溶液中的溶解性能及再生结构 总被引:4,自引:0,他引:4
比较了不同质量分数的ZnCl2水溶液溶解不同聚合度纤维素的能力,发现:质量分数为65.0%以下的ZnCl2水溶液不能溶解纤维素;当ZnCl2水溶液的质量分数达到或超过65.0%时,未被水分子饱和的Zn2+可与纤维素分子链作用,使纤维素溶解,且65.0%的ZnCl2水溶液的溶解效果最佳;随着纤维素聚合度的增大,其溶解性能下降;经ZnCl2水溶液溶解后的再生纤维素的聚合度下降.广角X-射线衍射(WAXD)分析表明再生纤维素为纤维素Ⅱ结晶变体;傅里叶变换红外光谱(FT-IR)显示ZnCl2水溶液是纤维素的非衍生化溶剂,且再生纤维素分子内的氢键减弱. 相似文献
12.
本文用椭园法、交流阻抗及电位测量研究了钛阳极氧化膜在0.5N硫酸中的溶解规律和耐蚀性。结果表明:钛氧化膜的溶解和膜中存在离子缺陷有关,膜溶解遵从对数规律。钛氧化膜的耐蚀性与膜的厚度有关。当膜溶解时,厚度变化与电容倒数成正比。 相似文献
13.
Ni/Al2O3、Co /Al2O3和Ni-Co /Al2O3催化剂催化乙醇水蒸气重整制氢的性能 总被引:1,自引:0,他引:1
利用浸渍法制备Ni/Al2O3、Co/Al2O3、Ni-Co/Al2O3催化剂,考察催化剂对乙醇水蒸气重整反应的催化性能,对催化剂进行x射线衍射(XRD)表征.实验结果表明,Ni/Al2O3催化剂具有较好的低温活性,Co/Al2O3催化剂具有较高的氢气选择性和较低的甲烷选择性,而Ni-Co/Al2O3催化剂表现出良好的催化性能,有较高的低温活性,较高的氢气、二氧化碳选择性,较低的一氧化碳、甲烷选择性,450 ℃时乙醇转化率达到100%, 氢气选择性为79.8%,二氧化碳选择性为91.9%. 相似文献
14.
Ti/PbO2阳极在氯化钠溶液中电解生成活性氯的研究 总被引:5,自引:0,他引:5
对Ti/PbO2阳极在氯化钠稀溶液和浓溶液中电氧化生成活性氯进行了研究. 实验表明, 氯离子浓度、 温度、 电流密度、 pH值、 电极材料、 隔膜等因素对活性氯的电解生成有很大影响, 且在氯化钠浓溶液和稀溶液条件下差别很大. 实验中发现, 溶液中活性氯的生成采用Ti/Ru-Ti-Sn氧化物涂层阳极优于Ti/PbO2阳极. 相似文献
15.
采用2步水热法制备出1种以NiCo_2O_4纳米线为核,MnO_2纳米颗粒为壳的三维结构MnO_2@NiCo_2O_4@Ni-foam复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)对复合催化剂的结构和形貌进行表征;通过循环伏安法(CV),恒流充放电性能(GCD)和电化学阻抗谱(EIS)来进行表征复合材料的电化学性能;通过O_3催化降解装置对复合材料的催化性能进行研究。结果表明:MnO_2@NiCo_2O_4@Ni-foam复合材料在频率范围为0.1~10 000 Hz时阻抗较低;通过降解实验发现,MnO_2@NiCo_2O_4@Ni-foam对O_3的降解率高于50%,表现出良好的催化效果。这表明MnO_2@NiCo_2O_4@Ni-foam复合材料在降解O_3,净化空气方面有广阔的应用前景。 相似文献
16.
以多壁碳纳米管(CNTs)和高锰酸钾(KMnO_4)为原料,制备了MnO_2含量不同的MnO_2/CNTs复合材料。利用场发射扫描电镜和透射电镜观察了材料形貌的变化;利用氮气等温吸附研究了MnO_2含量对复合材料的比表面积和孔容的影响;并对复合材料进行了电化学性质测试。结果发现,MnO_2含量对复合材料的纤维直径、片层厚度及比表面积的影响显著;当KMnO_4的质量是碳纳米管的10倍时,所得复合材料的电容性能最优,比电容最高可达199F/g,归一化后MnO_2比电容最高可达255F/g。研究表明,当优化电极材料性质时,更大范围内的金属氧化物含量可能会影响到复合物的微观结构。 相似文献
17.
利用高比表面积、大孔隙率金属有机骨架材料(metal-organic frameworks, MOFs)作为牺牲模板,制备了MOFs(ZIF-8)衍生多孔碳材料(PCs),以其作为导电基底,在表面生长金属氧化物MnO_2,获得MnO_2/PCs复合材料并将其应用在超级电容器中.制备的复合材料具有良好的电化学电容性能,在三电极体系中,1 A·g~(-1)的电流密度下比电容可达199 F·g~(-1),经过2 000次充放电循环后,比电容仍能保持初始值的80%.使用MnO_2/PCs复合材料作为正极,PCs作为负极,组成的非对称型电容器MnO_2/PCs//PCs具有优异的电化学储能性能,在950 W·kg~(-1)的功率密度下,能量密度高达10.16 Wh·kg~(-1);而且当功率密度上升为9 500 W·kg~(-1)时,能量密度仍可以保持4.48 Wh·kg~(-1). 相似文献
19.
《上海大学学报(自然科学版)》2021,27(2)
过渡金属氧化物作为锂离子电池(lithium-ion batteries,LIBs)阳极材料时具有较高的理论容量,但因其电导率低,以及充放电过程中的体积膨胀效应常会导致容量的快速衰减.碳包覆是提升金属氧化物导电性的有效方法,二者之间的协同效应也可以有效提升材料的电化学性能.以MnO_2纳米线为模板制备出MnO_2@ZIF-67有机-无机杂化纳米结构,再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn_2O_4纳米线复合材料(MnO@CoMn_2O_4@N-C).ZIF-67的有机配体在高温煅烧过程中发生碳化反应,产生了氮掺杂碳,提升了导电性.当作为锂离子电池阳极材料时,MnO@CoMn_2O_4/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA·h/g,并且在100次充放电循环后的放电比容量仍保持在925.8 mA.h/g,在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA·h/g,同时具有优异的倍率循环性能.这种优异的电化学储能特性主要来源于复合材料的特殊结构,以及氮掺杂碳的包覆. 相似文献
20.
针对Al2O3和膨胀石墨(EG)单独作为吸附剂时存在不易分离和吸附性能较差等问题, 以EG为骨料、 Al(NO3)39H2O为铝源、 NH3H2O为沉淀剂、 无水乙醇为分散剂制备纳米Al2O3/EG, 并用Fourier变换红外光谱(FT-IR)、 X射线衍射(XRD)和扫描电子显微镜(SEM)等方法对吸附剂进行表征; 以Al2O3/EG为吸附剂, 对刚果红溶液进行吸附, 并考察加氨水方式、 活化温度、 活化时间、 Al2O3与EG质量比和浸渍时间对吸附性能的影响. 结果表明: 纳米级Al2O3成功负载在EG上; 逐滴加入氨水、 活化温度170 ℃、 活化时间3 h、 Al2O3与EG质量比为0.06∶1、 浸渍时间为20 min时, 吸附效果最好, 脱色率约为86%; Al2O3/EG明显优于EG的吸附效果, 其脱色率是EG的2倍以上; 与Al2O3相比, 在吸附后的分离操作中, Al2O3/EG更易分离. 相似文献