共查询到19条相似文献,搜索用时 77 毫秒
1.
王慧勤 《宝鸡文理学院学报(自然科学版)》2009,29(1)
目的 为了减少风电场风速预测的误差,研究基于支持向量机(SVM)模型的短期风速预测.方法 采用SVM回归估计算法建立预测模型.结果 将该方法应用于实测数据进行预测,结果表明预测误差确实得到了降低.结论 和传统回归方法(如ARMA)比较说明所建模型是可行和有效的. 相似文献
2.
针对短期风速预测问题,提出一种基于人工蜂群算法(Artificial Bee Colony Algorithm,ABC)和BP(BackPropagation)神经网络的预测模型。将温度、当地气压、海平面气压、风向、风切变、风速等气象数据作为原始样本数据,首先进行归一化处理,然后利用BP神经网络对归一化后的数据进行训练,并用ABC优化BP的权值阈值矩阵,建立短期风速预测模型。仿真结果表明,与BP神经网络、ABC-SVM等模型进行对比,该模型在短期风速预测方面的准确度更高。 相似文献
3.
基于遗传算法的支持向量机短期风速预测 总被引:1,自引:0,他引:1
对风电场风速实现较准确的预测,可以有效减轻并网后风电场对电网的影响。支持向量机模型的预测精度在很大程度上依赖于模型参数的选择,为提高预测模型的泛化能力和预测精度,应用遗传算法选择支持向量机的模型参数,再根据选择的参数对小时风速进行预测。实验结果表明本文方法能够获得较高的风速预测精度。 相似文献
4.
为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,SVM)的组合短期风速预测方法。首先用CEEMDAN对原始风速时间序列进行分解,得到一系列不同频率的子序列;其次,使用BA-SVM组合模型预测对分解后的各个子序列分别进行预测;最后,将各子序列的预测结果叠加得到风速预测值。仿真结果表明,该模型提高了预测精度,减小了误差。 相似文献
5.
支持向量机(SVM)模型的核心问题是惩罚因子c和核函数参数g的选取.通常支持向量机库工具箱(LIBSVM)采用传统网格搜索算法进行参数寻优,只能得到交叉验证意义下的全局最优解,在更大范围内进行参数寻优比较费时,且效率较低,针对这一问题,提出了基于遗传算法的启发式寻优,以交叉验证(CV)意义下的准确率为适应度,通过一系列的选择交叉变异操作,得到最优的c和g,将优化后的SVM模型应用于大坝扬压力的预测.通过某大坝扬压力监测的实例应用,将遗传算法优化的LIBSVM与传统的LIBSVM预测相对比,预测效果更好,精度更高. 相似文献
6.
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度. 相似文献
7.
为了进一步提高短期风速预测的精度,分析了一种改进的风速预测方法.该方法考虑风速发生变化的极值点对总体预测误差的影响,以及预测曲线较实际曲线产生的滞后,分别对预测数据进行了极值点修正和偏移量处理.在对未来1 h风速进行预测时,相比粒子群优化(PSO)的最小二乘支持向量机(LS-SVM)模型、未经优化的LS-SVM模型及反向传播(BP)神经网络模型,所提出的模型具有较高的预测精度和运算速度.算例结果表明,改进的LS-SVM算法是进行短期风速预测的有效方法. 相似文献
8.
基于自适应噪声完备集合经验模态分解(CEEMDAN)、布谷鸟算法(CS)和支持向量机(SVM)构建了CEEMDAN-CS-SVM混合风速预测模型,实现了黄土高原陇东区风电场月平均风速的准确预测.首先,采用CEEMDAN算法对收集到的风速时间序列进行去噪,以避免直接采用收集到的风速数据进行预测将导致较大误差的缺陷;其次,采用布谷鸟算法对SVM的惩罚系数和核函数半径进行优化,以克服SVM参数选择敏感的缺陷;最后,用构建的CEEMDAN-CS-SVM混合风速预测模型实现了黄土高原陇东区风电场月平均风速的预测.数值结果表明混合风速预测模型CEEMDAN-CS-SVM能够实现研究区域短期风速的准确预测,预测精度比混合模型DWT-SVM、EEMD-SVM、CEEMDAN-SVM、CS-SVM、DWT-CS-SVM、EEMD-CS-SVM及SVM的预测精度高. 相似文献
9.
探讨了基于最小二乘支持向量机的组合预测模型在风速短期预测中的可行性.该模型以BP神经网络、RBF神经网络、粒子群BP神经网络3种预测模型的风速预测值作为组合预测模型的输入,实际风速值为输出,利用最小二乘支持向量机回归算法构造风速间的非线性关系,以实现风速多步预测.将该模型的预测性能与BP神经网络组合预测模型、线性组合预测模型进行比较,通过平均绝对误差、误差平方和、平均相对误差3个指标进行评价.结果表明,最小二乘支持向量机预测模型的平均相对误差低于6%,其他误差指标也明显低于其他预测模型.因此,最小二乘支持向量机组合预测模型预测精度不仅高于任一单项预测模型预测精度,而且高于传统的线性组合预测模型与一般BP神经网络组合预测模型.验证了该模型在风速预测中的可行性. 相似文献
10.
为了实现对风速范围区间的准确预测,提出一种基于模糊信息粒化和灰狼优化-支持向量机(GWO-SVM)算法的风速预测模型.该模型首先利用模糊信息粒子,从一段连续时间的风速值提取出最大值、最小值及大致的平均水平值;然后,采用时间序列风速输入模型,构建输入支持向量机模型的标签向量与特征矩阵;最后,通过灰狼算法进行支持向量机预测模型的参数寻优,实现对风速范围区间的准确预测.在实例验证阶段,将风速历史数据进行模糊粒化,采取4种不同的参数寻优方式对支持向量机预测模型进行参数寻优.结果表明:GWO-SVM算法可以有效地提高风速范围预测的精确度. 相似文献
11.
基于滚动极值处理的BP神经网络方法的WRF模式预报风速订正 总被引:1,自引:0,他引:1
为解决风速预报准确性问题,提高风能利用率,应用滚动的BP神经网络方法结合对极值的处理,对我国某风电场2007年4—11月的WRF模式预报风速结果进行了滚动订正研究。结果表明,经过1 h、12 h、24 h时间步长的滚动极值BP神经网络方法订正后,风电机组轮毂高度70 m处订正风速的相对均方根误差平均值分别减少16.59%、12.11%和11.61%,相对平均绝对误差平均值分别减少13.81%、11.09%和10.37%;且以时间步长为1h的滚动极值处理的BP神经网络订正效果最好,预报风速更趋近于实测风速,预报精度明显提高。 相似文献
12.
基于台湾的气象观测资料与日本的漂流浮标资料,通过定性判断预报值与观测值的曲线走势、定量计算相关系数、偏差、均方根误差及平均绝对误差的比较方法,检验了T639预报风场在台湾周边的有效性,能为航海、海洋工程、防灾减灾等提供参考。结果表明,T639预报风场对影响台湾与周边的台风、冷空气过程都具有较强的预报能力,其中对冷空气的模拟效果整体好于台风过程,中低风速下的模拟效果好于高风速;在台风(或冷空气)和狭管效应的双重作用下,台湾海峡存在明显的大风中心,但在台湾岛的阻挡下,台湾西南部的高雄附近海域在冷空气期间持续存在一个低值中心,冷空气期间风向的向岸效应(风向呈圆弧形包绕着大陆海岸线)明显。 相似文献
13.
针对随机森林(RF)算法在风速预测中存在参数选择困难及预测精度低的问题,提出了基于改进果蝇优化算法(IFOA)的随机森林回归(RFR)模型.在果蝇优化算法(FOA)中引入指数函数和三角函数实现搜索步长的自适应更新,增强全局寻优和局部探索的能力.结合RFR算法对噪声和异常值具有良好容忍度的优点,利用IFOA优化RFR主要... 相似文献
14.
基于蛙跳算法的改进支持向量机预测方法及应用 总被引:1,自引:0,他引:1
针对支持向量机在中长期负荷预测中关键参数选择的问题,引入蛙跳算法(SFLA)以优化基于支持向量机的中长期负荷预测算法,解决支持向量机参数选择问题。以对中国能源消费总量预测为例,对本文提出的改进算法进行验证。以1979—1999年的能源消耗量作为样本,对2000—2009年能量消耗量进行检验。研究结果表明:引入蛙跳算法后,与用粒子群(PSO)算法改进的支持向量机以及普通支持向量机方法相比,改进支持向量机预测精度分别提高2.34%和3.21%,算法运行时间分别增加51 s和109 s。 相似文献
15.
基于支持向量回归(Support Vector Regression,简称SVR)的非线性时间序列预测是智能预测的重要前沿课题,在许多领域有着非常广泛的应用前景。文章介绍了SVR基本理论和方法,从金融、电力、交通、旅游等领域的典型应用对基于SVR的非线性时间序列预测进行了综述,分析了目前SVR在核函数、自由参数选择和输入数据处理方面存在的问题及其在应用领域进一步研究的方向。 相似文献
16.
基于LIBSVM的葡萄酒品质评判模型 总被引:1,自引:1,他引:0
葡萄酒的成分复杂,是划分葡萄酒品质的重要依据。文章通过对178个葡萄酒样品化学分析数据进行分析处理,其中葡萄酒属性13个,建立基于支持向量机的葡萄酒品质评判模型,利用LIBSVM工具对高维复杂葡萄酒属性数据进行分析、处理、优化和解释,分类结果准确率高达98%,从而对葡萄酒品质快速有效的评判提供了理论依据。 相似文献
18.
犯罪时间序列一般具有随机性和波动性强的特点。传统的时间序列建模方法利用犯罪时序数据之间的相关性建立预测模型;但对细颗粒度下的信息利用不足。相比之下,基于模糊信息粒化的支持向量机能够在对时间序列的细颗粒度数据进行粒化预处理的基础上建立拟合回归模型,实现粗颗粒度下的时序预测。利用基于模糊信息粒化的支持向量机方法对S市的侵财类案件数据进行分析预测,并与ARIMA模型进行了比较。结果表明该方法在预测精度上要显著优于时间序列预测模型。对公安部门的警务指挥与情报研判具有较高的实用性。 相似文献
19.
为提高大型风力发电机组捕获风能的能力,改善其主要零部件受荷载情况,提出基于有效风速估计和风剪切的风力发电机组独立变桨距控制策略.以某5 MW变速变桨风力发电机组为验证对象,基于Bladed软件平台对传统统一变桨控制策略和独立变桨控制策略进行仿真比较.结果表明:相对于统一变桨距控制策略,独立变桨距控制策略不但能满足维持风力发电机组输出功率额定值稳定的要求,而且使发电机组主要零部件的受荷载情况得到明显改善. 相似文献