首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目的 为了减少风电场风速预测的误差,研究基于支持向量机(SVM)模型的短期风速预测.方法 采用SVM回归估计算法建立预测模型.结果 将该方法应用于实测数据进行预测,结果表明预测误差确实得到了降低.结论 和传统回归方法(如ARMA)比较说明所建模型是可行和有效的.  相似文献   

2.
针对短期风速预测问题,提出一种基于人工蜂群算法(Artificial Bee Colony Algorithm,ABC)和BP(BackPropagation)神经网络的预测模型。将温度、当地气压、海平面气压、风向、风切变、风速等气象数据作为原始样本数据,首先进行归一化处理,然后利用BP神经网络对归一化后的数据进行训练,并用ABC优化BP的权值阈值矩阵,建立短期风速预测模型。仿真结果表明,与BP神经网络、ABC-SVM等模型进行对比,该模型在短期风速预测方面的准确度更高。  相似文献   

3.
基于遗传算法的支持向量机短期风速预测   总被引:1,自引:0,他引:1  
对风电场风速实现较准确的预测,可以有效减轻并网后风电场对电网的影响。支持向量机模型的预测精度在很大程度上依赖于模型参数的选择,为提高预测模型的泛化能力和预测精度,应用遗传算法选择支持向量机的模型参数,再根据选择的参数对小时风速进行预测。实验结果表明本文方法能够获得较高的风速预测精度。  相似文献   

4.
为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,SVM)的组合短期风速预测方法。首先用CEEMDAN对原始风速时间序列进行分解,得到一系列不同频率的子序列;其次,使用BA-SVM组合模型预测对分解后的各个子序列分别进行预测;最后,将各子序列的预测结果叠加得到风速预测值。仿真结果表明,该模型提高了预测精度,减小了误差。  相似文献   

5.
支持向量机(SVM)模型的核心问题是惩罚因子c和核函数参数g的选取.通常支持向量机库工具箱(LIBSVM)采用传统网格搜索算法进行参数寻优,只能得到交叉验证意义下的全局最优解,在更大范围内进行参数寻优比较费时,且效率较低,针对这一问题,提出了基于遗传算法的启发式寻优,以交叉验证(CV)意义下的准确率为适应度,通过一系列的选择交叉变异操作,得到最优的c和g,将优化后的SVM模型应用于大坝扬压力的预测.通过某大坝扬压力监测的实例应用,将遗传算法优化的LIBSVM与传统的LIBSVM预测相对比,预测效果更好,精度更高.  相似文献   

6.
为了进一步提高短期风速预测的精度,分析了一种改进的风速预测方法.该方法考虑风速发生变化的极值点对总体预测误差的影响,以及预测曲线较实际曲线产生的滞后,分别对预测数据进行了极值点修正和偏移量处理.在对未来1 h风速进行预测时,相比粒子群优化(PSO)的最小二乘支持向量机(LS-SVM)模型、未经优化的LS-SVM模型及反向传播(BP)神经网络模型,所提出的模型具有较高的预测精度和运算速度.算例结果表明,改进的LS-SVM算法是进行短期风速预测的有效方法.  相似文献   

7.
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度.  相似文献   

8.
基于自适应噪声完备集合经验模态分解(CEEMDAN)、布谷鸟算法(CS)和支持向量机(SVM)构建了CEEMDAN-CS-SVM混合风速预测模型,实现了黄土高原陇东区风电场月平均风速的准确预测.首先,采用CEEMDAN算法对收集到的风速时间序列进行去噪,以避免直接采用收集到的风速数据进行预测将导致较大误差的缺陷;其次,采用布谷鸟算法对SVM的惩罚系数和核函数半径进行优化,以克服SVM参数选择敏感的缺陷;最后,用构建的CEEMDAN-CS-SVM混合风速预测模型实现了黄土高原陇东区风电场月平均风速的预测.数值结果表明混合风速预测模型CEEMDAN-CS-SVM能够实现研究区域短期风速的准确预测,预测精度比混合模型DWT-SVM、EEMD-SVM、CEEMDAN-SVM、CS-SVM、DWT-CS-SVM、EEMD-CS-SVM及SVM的预测精度高.  相似文献   

9.
探讨了基于最小二乘支持向量机的组合预测模型在风速短期预测中的可行性.该模型以BP神经网络、RBF神经网络、粒子群BP神经网络3种预测模型的风速预测值作为组合预测模型的输入,实际风速值为输出,利用最小二乘支持向量机回归算法构造风速间的非线性关系,以实现风速多步预测.将该模型的预测性能与BP神经网络组合预测模型、线性组合预测模型进行比较,通过平均绝对误差、误差平方和、平均相对误差3个指标进行评价.结果表明,最小二乘支持向量机预测模型的平均相对误差低于6%,其他误差指标也明显低于其他预测模型.因此,最小二乘支持向量机组合预测模型预测精度不仅高于任一单项预测模型预测精度,而且高于传统的线性组合预测模型与一般BP神经网络组合预测模型.验证了该模型在风速预测中的可行性.  相似文献   

10.
为了实现对风速范围区间的准确预测,提出一种基于模糊信息粒化和灰狼优化-支持向量机(GWO-SVM)算法的风速预测模型.该模型首先利用模糊信息粒子,从一段连续时间的风速值提取出最大值、最小值及大致的平均水平值;然后,采用时间序列风速输入模型,构建输入支持向量机模型的标签向量与特征矩阵;最后,通过灰狼算法进行支持向量机预测模型的参数寻优,实现对风速范围区间的准确预测.在实例验证阶段,将风速历史数据进行模糊粒化,采取4种不同的参数寻优方式对支持向量机预测模型进行参数寻优.结果表明:GWO-SVM算法可以有效地提高风速范围预测的精确度.  相似文献   

11.
随着"夜经济"日益成为商业活动的消费亮点,众多商家一直致力于通过满足消费者多样化的需求和体验来促使销售额的稳步提升。但是,很多店铺的夜间客流量并不理想,店铺的整体收益难以提高,是商家长期以来所面临的难题。借助多元线性回归和支持向量机对客户行为进行研究,发掘关键影响因素,预判客户消费行为。实证研究表明,分析客户行为可以为企业及时调整营销策略提供支持。  相似文献   

12.
基于支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
讨论了现有的支持向量机回归参数选取方法.针对负荷预测建模,采用交叉验证的方法对参数进行选取,得到的最优参数对未来的峰荷进行预测,仿真结果表明了该方法的有效性.  相似文献   

13.
基于支持向量机的上市公司财务危机预警研究   总被引:1,自引:0,他引:1  
以2002—2005年在沪深两市挂牌交易的87家ST上市公司及102家非ST上市公司为样本,采用公开发布的财务报表中的相关数据,运用支持向量机模型进行了实证研究.研究表明,在小样本数据条件下,与其他预警模型相比支持向量机模型预测精度远远高于其他方法,具有其他方法所不具有的优越性.  相似文献   

14.
基于支持向量回归(Support Vector Regression,简称SVR)的非线性时间序列预测是智能预测的重要前沿课题,在许多领域有着非常广泛的应用前景。文章介绍了SVR基本理论和方法,从金融、电力、交通、旅游等领域的典型应用对基于SVR的非线性时间序列预测进行了综述,分析了目前SVR在核函数、自由参数选择和输入数据处理方面存在的问题及其在应用领域进一步研究的方向。  相似文献   

15.
关于改进的支持向量机的研究   总被引:2,自引:0,他引:2  
支持向量机是一种基于统计学习理论和对偶理论的分类和函数估计方法,其推广能力强和全局最优的特点引起了学者的广泛关注。本论文对目前所提出的各类改进的支持向量机进行了初步的研究和分析。  相似文献   

16.
能源需求的支持向量机预测   总被引:2,自引:1,他引:2  
陈钢  高尚 《科学技术与工程》2008,8(3):757-759763
对灰色、神经网络和支持向量机的三个预测模型进行了研究,以某城市的1999-2006年能源需求为例,对能源需求进行了预测.经过比较,支持向量机的预测方法精度较高.  相似文献   

17.
基于支撑向量机在线学习方法的短期负荷预测   总被引:2,自引:0,他引:2  
提出了基于支撑向量机在线学习方法的短期负荷预测,该方法克服了传统的支撑向量机负荷预测当训练样本集合改变时为了保证预测精度必需重新进行训练来得到新的回归函数的缺点.充分利用支撑向量机解的稀疏性和前一次的训练结果,提出了递增和递减算法,直接修改原有回归函数的系数来得到新回归函数.实例计算表明,该方法与传统支撑向量机方法相比,具有计算速度快,推广能力强的显著特点,在相同预测精度下,计算速度提高了近两个数量级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号