首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
关于单位圆内高阶线性微分方程的复振荡   总被引:1,自引:0,他引:1  
对高阶线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=F(z)的复振荡进行了研究,其中系数Aj(z)(j=0,…,k-1)和F(z)是单位圆△内的解析函数,得到了解的超级和零点收敛指数的估计.  相似文献   

2.
研究了在单位圆内的高阶非齐次线性微分方程.设f是单位圆内高阶非齐次线性微分方程f^(k)+Ak-1(z)f^(k-1)…Ao(z)f=F(z)的解,其中系数A(z)(J=0,…,k-1)在单位圆内解析,F(z)(不恒为0)也在单位圆内解析,在不同的条件下得到了,的增长级与F(z)的增长级之间的关系.  相似文献   

3.
讨论了系数是单位圆内的解析函数的高阶齐次线性微分方程解及解的1次导数和2次导数与其不动点之间的关系,并获得了它们之间的精确估计.  相似文献   

4.
研究了单位圆内解析函数的线性微分方程解的性质,得到某些一阶、二阶、高阶线性微分方程所有解为不可允许解的充分条件,以及二阶、高阶线性微分方程所有解为无穷级的一个充分条件.  相似文献   

5.
研究了单位圆内高阶非齐次线性微分方程的振荡解,得到了方程f(k)+ak-1f(k-1)+…+a0f=F(a0,a1,…,ak-1,和F是单位圆内的亚纯函数)具有1个振荡解空间,其空间中所有解的零点收敛指数为∞,至多除去1个例外值.  相似文献   

6.
对高阶非齐次线性微分方程f(k)+Ak-1f(k-1)+Ak-2(f(k-2)+…+A1f’(z)+A0f=F的复振荡进行了研究,其中A0(z),A1(z),…,Ak-1(z),F(z)≠0是单位圆Δ内的有限级解析函数.讨论了系数是单位圆内的解析函数的高阶非齐次线性微分方程解及一次导数和二次导数与其小函数之间的关系,并获得了它们之间的精确估计.  相似文献   

7.
研究了高阶齐次线性微分方程f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。  相似文献   

8.
利用亚纯函数的Nevanlinna的基本理论和方法,研究了系数是单位圆内的高阶齐次和非齐次线性微分方程解的复振荡,讨论了系数是单位圆内的解析函数的高阶齐次和非齐次线性微分方程的解及一次导数和二次导数与其小函数之间的关系,得到了单位圆内高阶齐次和非齐次线性微分方程的解取小函数的精确估计,推广和改进了以前一些文献的结论。  相似文献   

9.
研究了在单位圆内的高阶微分方程. 设f是高阶微分方程的解,得到了f分别属于加权 Dirichet空间Dq和Bergman空间La^p的一个充分条件,并得到了f是不可容许解的一个充分条件.  相似文献   

10.
结合微分方程理论和函数空间理论,研究了单位圆内高阶线性微分方程解的性质,得到当方程系数满足某些条件时,其解属于某类函数空间的充分条件.  相似文献   

11.
研究了高阶线性微分方程f(k)+Ak-1f(k-1)+Ak-2f(k-2)+…+A1f+A0f=0和f(k)+Ak-1f(k-1)+Ak-2f(k-2)+…+A1f(z) +A0f=F解的增长性,其中A0(z),A1(z),…,Ak-1(z),F(z)≠0是单位圆△={z:| z|<1|内的解析函数.得到了微分方程解的超级、零点收敛指数与小函数之间的关系.  相似文献   

12.
 研究了高阶线性齐次微分方程
f (k)+Ak-1(z)Pk-1(e z)f +…+A1(z)P1(ez)f +A0(z)P0(ez)f=0
解的增长性,其中Aj(z)≠0(j=0,1,…,k-1)是整函数,Pj(ez)(j=0,1,…,k-1)是ez的非常数多项式,它们的常数项都为零,且次数不相等。证明了该微分方程的每一个非零解有无穷级。  相似文献   

13.
利用亚纯函数的Nevanlinna的基本理论和方法,研究了系数是单位圆内的高阶齐次和非齐次线性微分方程解的复振荡,讨论了系数是单位圆内的解析函数的高阶齐次和非齐次线性微分方程的解及一次导数和二次导数与其小函数之间的关系,得到了单位圆内高阶齐次和非齐次线性微分方程的解取小函数的精确估计,推广和改进了以前一些文献的结论。
  相似文献   

14.
研究了多项式系数高阶齐次线性微分方程解的增长级问题,得到了比前人更精确的结果.  相似文献   

15.
研究具有迭代级整函数系数的高阶线性微分方程解的增长性和零点问题.当存在某一系数起主导作用时,得到方程解的迭代级和迭代零点收敛指数的估计,推广了已有的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号