共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
基于支持向量回归神经网络的时间序列预测 总被引:2,自引:1,他引:1
为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR-NN).SVR-NN用支持向量回归(SVR)方法获得网络的初始结构和权值,自适应地生成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点参数和权值. SVR-NN有很好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的"过拟合"现象.将SVR-NN应用到时间序列预测上.结果表明,SVR-NN预测模型能精确地预测混沌时间序列,具有很好的理论和应用价值. 相似文献
4.
基于小波网络的非线性组合预测方法研究 总被引:14,自引:0,他引:14
提出了一种基于小波网络的非线性组合预测新方法,以克服线性组合预测方法在解决非平衡时间序列组合建模问题所遇到的困难和存在的不足,并给出了相应的学习算法求解小波函数线性组合的尺度和时延参数以及神经网络权值。理论分析和大量的应用实例表明:本方法具有很强的泛化能力与自适应数据和函数变化的能力,在处理诸如经济时间序列这种具有一定程度不确定性的非线性系统的组合建模和预测方面有较高的应用价值。 相似文献
5.
非线性时间序列建模的混合GARCH方法 总被引:2,自引:2,他引:2
在文献[1]的基础上,首次提出混合广义自回归务件异方差(Mixture Generalized Autoregressive Conditional Heteroscedastic Model简记MGARCH)模型;给出并证明了MGARCH模型的一阶平稳性的充分必要条件及二阶平稳性的充分务件;给出该模型参数估计的EM算法:利用BIC定阶准则对MGARCH模型的各成份进行定阶;计算结果表明该模型对金融非线性时间序列中存在的变异率现象具有较强的描述能力,有广阔的应用前景。 相似文献
6.
在金融企业中,时间序列是一种重要的数据类型。高效、准确地预测金融时间序列对于企业的运作具有重要意义。提出使用一种具有增量学习能力的模糊神经网络(FNN-IL)应用于金融时间序列的预测。FNN-IL能学习蕴涵在时间序列中的知识,并能跟踪时间序列的运行从而动态调整模糊规则库。对比试验表明FNN-IL的性能优于传统的FNN。 相似文献
7.
基于支持向量机的混沌时间序列非线性预测 总被引:25,自引:1,他引:25
提出一种新的应用支持向量机回归原理的混沌时间序列非线性预测方法,同时利用自适应的方法对支持向量机的参数进行优化.仿真结果显示支持向量机具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度,同时还讨论了支持向量机中参数以及嵌入维数的变化对泛化误差的影响,得出的结论与统计学习理论中的VC维理论相一致. 相似文献
8.
基于神经网络动态非线性非平稳经济系统预测 总被引:4,自引:0,他引:4
考虑实际经济系统中广泛存在着非线性和时变性因素,以及大部分变量的序列具有增增长特性,提出了用网络方法,建立实际经济系统的时变非线性模型,采用增广卡尔曼滤波算法训练神经网络,并根据先验信息(序列的时间增长特性)构造参数转移矩阵,对实际经济的预测分析结果证明,与传统定常非线性预测模型相比,该方法不仅可以在线递推预测,而且由于参数转移矩阵的引入,预测精度得到很大的提高。 相似文献
9.
10.
基于动态混沌神经网络的预测研究——以马铃薯时间序列价格为例 总被引:2,自引:0,他引:2
针对农产品价格波动的非线性特征明显、传统时间序列方法在预测农产品价格短期波动存在不足等状况,本文将混沌理论和神经网络技术应用到农产品价格短期预测研究中,充分利用相关技术优势,设计了动态混沌神经网络时间序列预测模型.在此基础上,选取2008年1月21日-2012年7月1日的中国马铃薯日度价格为研究对象,对所构建的动态混沌神经网络时间序列预测模型进行学习、训练和测试,并用统计分析方法对模型性能进行评价与分析,最后,将所构建模型的预测结果与传统预测方法预测出的结果进行比较研究.结果显示:整个动态混沌神经网络结构为27-12-1,所设计的基于动态混沌神经网络的马铃薯价格时间序列预测模型在预测精度和性能上较ARMA模型均具有明显优势,这一预测模型在农产品价格时间序列短期预测研究上将具有广阔的应用前景. 相似文献
11.
电信行业时间序列预测系统设计与实现 总被引:4,自引:0,他引:4
预测分析是电信行业知识管理系统中的一个重要部分 .利用数据仓库中存储的庞大信息 ,通过回归分析、指数平滑、灰色预测以及神经网络组合预测算法对电信行业各种数据信息进行合理的组织和预测计算 ,供决策者参考 .文中简要介绍电信行业时间序列预测系统的结构设计 ,算法设计以及预测结果的分析方法. 相似文献
12.
研究了RBF-AR模型在非线性时间序列中的建模和预测问题,并把它与其它一些新近提出的模型或方法加以了比较.一种结构化非线性参数优化方法用来辨识此模型.数值实验和比较研究表明采用结构化非线性参数优化方法的RBF-AR模型在预测精度上要大大优于其它一些模型或方法. 相似文献
13.
基于RBF网络的混沌时间序列的建模与多步预测 总被引:10,自引:1,他引:10
提出将RBF神经网络应用于混沌时间序列的建模与预测中 ,设计了一个三层RBF网络结构 ,说明了RBF网络用于混沌时间序列建模和预测时的基本性质。仿真结果表明 ,RBF网络模型对混沌时间序列有比较强的拟合能力和比较高的一步及多步预测精度。采用RBF网络进行混沌时间序列的建模和预测能够取得比其它方法好得多的效果。 相似文献
14.
15.
时间序列的小波神经网络预测模型的研究 总被引:32,自引:1,他引:32
针对非线性时间序列,建立了小波神经网络预测模型,通过计算小波分解和小波级数,达到最优的逼近效果.经实例验证,该方法能有效地提高预测精度,避免了人工神经网络模型的固有缺陷. 相似文献
16.
农特产生产潜力的分析研究是服务“三农”的一个重要问题,对优化农业生产结构有现实的指导意义。从实践序列分析理论和方法着手,选择临安市1991~2002年的山核桃产量为时间序列数据,建立P阶时间序列预测模型。预测2002年产量结果与实际值误差仅为3.2%,并采用最小信息准则AIC的模型阶数P=17为最佳方案,结果和山核桃盛果期为17年一致。说明模型有其合理性。表3,参3。 相似文献
17.
从函数逼近和系统辨识两个方面推导了非线性自回归时序模型(GNAR模型)的物理结构,通过公式推导及仿真数据研究GNAR模型与确定性实函数、经典时序模型和混沌序列的关系,明确GNAR模型对系统逼近的机理.以Lorenz系统输出的混沌序列和现代经典时序-太阳黑子序列为算例进行数据实验,证明了GNAR模型在建模和预测方面的优越性. 相似文献
18.
神经网络在预测中的一些应用研究 总被引:22,自引:0,他引:22
预测是一个很难的研究课题,近来利用新的科学理论探索新的预测方法是预测界人士进行预测课题研究的一个重要方面.其中人工神经网络在预测领域中的应用研究进展最快,它包括研究神经网络预测方法和神经网络在预测过程中作为辅助工具.本文介绍几种主要的神经网络预测方法及其应用和利用神经网络确定ARMA 模型的结构. 相似文献
19.
基于递阶遗传算法和BP网络的时间序列预测 总被引:7,自引:4,他引:7
提出一种基于递阶遗传算法和BP神经网络的时间序列预测模型。现有的BP训练方法只能训练BP网络的权重,网络的结构得预先用某种方法确定。利用很好设计的递阶遗传算法能够把网络的结构和权重同时通过训练确定。以铁路客运市场数据进行训练和测试,与传统的BP网络预测模型相比较,结果证明该模型的预测精确度是令人满意的,所提出的方法是可行的。 相似文献